Computer Science II Summer 2005

Homework Assignment #4

Assigned: 6/23/05

Due: 7/6/05 by 11:55pm to WebCT
Part I: Radix Sort

You are to implement both Counting Sort and Radix Sort to sort a list of random Social Security Numbers, as well as adapt your sort from program 3 (either Merge Sort or Quick Sort) to sort Social Security Numbers. You will be given a SSN class which manages social security numbers. In fact, you will only need to download the SSN.class file from the course web page in order to use the class. Here are the public methods in the class and what they do:

// Constructor that creates an SSN object using its integer

// parameter n. Specifically, the last 9 digits of n are 

// used.

public SSN(int n);

// This method returns the digit in the 10^place location

// of the current object. Thus, if the current object was

// the SSN 345-65-9112, then getDigit(0) would return 2.

public int getDigit(int place);

// Returns a positive integer if the current object is 

// greater than other, a negative integer if the current

// object is less than other, or 0 otherwise.

public int compareTo(Object other);

// Returns a String representation of the current object.

public String toString();

Create a class Radix that has an array of SSN objects as its only instance variable. Your class should have the following methods:

// Constructor that creates a Radix object with numValues

// SSN objects using the Random object r. All SSN objects

// created must be created using a positive number.

public Radix(int numValues, Random r);

// Constructor that creates a copy of the object r.

public Radix(Radix r);

// This method performs a counting sort on the current 

// object using just the 10^digit digit of the data. The

// sorted array of SSN objects is returned.

public SSN[] CountingSort(int digit);

// This method performs a Radix sort on the current object.

public void RadixSort();

// This method prints out each SSN in the current object,

// one SSN per line.

public void print();

After implementing these methods, adapt your sort from program #3 to sort an array of SSN objects. (Please call this method either QuickSort or MergeSort.) Run this sort against the Radix Sort for array sizes 10000, 50000 and 100000. (If you'd like, you can try even larger array sizes, but that isn't required.) Also, run your sort against Java's built-in sort method in the Arrays class. Which of the three methods does best? Does the same one do the best for all sizes you tried? Write a brief summary of your findings in a textfile called results.txt. 

Part II: Analysis of Heap Sort

Do a detailed analysis of Heap Sort after the n unsorted items have been placed in a Heap. The simple analysis notes that we run the "delete minimum" method exactly n times and that the longest any of those calls could take is O(log n) time, thus the total running time must be O(nlogn).

But, we notice that the heap gets smaller and smaller as the algorithm runs. Thus, the delete minimum operation starts taking less and less time. For a more accurate analysis, this should be considered.

You will be lead through this more detailed analysis step by step. Our goal will be to count the maximum number of swaps the algorithm will encounter.

First, we will assume that the number of elements being sorted, n = 2k - 1, where k is a positive integer. This will simplify our calculations.

1) At the bottom level of the heap, how many elements are there? What is the maximum number of swaps that will occur when we percolateDown each of these elements? (Note that these elements may change as we run our percolateDown's, but that exactly this many elements have the potential to be percolatedDown to this lowest level of the tree.)

2) Once all of those elements are gone, the height of our heap will have decreased by 1. How many elements are now at the bottom row of the heap? What is the maximum number of swaps that will occur when we percolateDown each of these elements?

3) Using the information in #1 and #2, make a chart for the number of elements on each row, and the maximum number of swaps that will occur when they get percolatedDown. Here's a nice hint:

	Number of Nodes
	Maximum Number of Swaps

	1
	

	2
	

	4
	

	...
	

	2k-2
	

	2k-1
	


4) Using the chart above, write a summation that represents the maximum number of swaps the Heap Sort algorithm uses, (after the elements have been placed in a heap).

5) Determine this sum in terms of k. Then substitute so that the sum is expressed in terms of n. Finally, determine the order notation of this value.


What to Turn In

You should create the files Radix.java and Sort.java (which will contain everything you need to do either your MergeSort of QuickSort) for part I. You should also turn in a file results.txt for part I. Zip up these three files and name the zipped file XXXX.zip, where XXXX is your last name. Submit this zip file through WebCT. Write out part II on paper, and submit this in class on the day of Exam #2.

