Computer Science II
Program 2: Printer Priority Queue
Consult WebCourses for the due date and late cut-off date

The Problem

Your boss doesn’t like waiting for printouts. He has asked you to rewrite the printer queue for him so that if necessary, he can “pull rank” and get his printouts before someone else who might have submitted a job earlier. Of course, if you do a good job on this project, he’ll allow you to put submissions into the queue with high priority also.
In essence, he wants you to implement a priority queue. When each job is inputted into the printer queue, it will be paired with a priority number. The lower this number, the higher the priority for the job will be. Right after the printer finishes one job, it will move to the job with the lowest priority number of those that are waiting. If there are multiple such jobs, it will simply take the one that was requested first. Since the printer queue runs on a sequential processor, no two requests ever occur at the same time, so this tie breaker is sufficient in determining which job to print next.

The number of seconds the printer takes to process a single print job is 2 plus the number of pages in the job. (The two extra seconds are the “extra” time to get the job ready for its specifications before the actual printing begins.)

Input File Specification (printer.txt)

The input file has a single positive integer, n, on its first line, specifying the number of printer queue scenarios in the input file.

The first line of each printer queue case will have a positive integer, r (r < 1001), where r represents the number of printer requests. The next r lines will have information about each printer request in the order in which it was made, with no two requests occurring at the exact same time.

Each of the input lines will have the following format:

TIME DOC_NAME PRIORITY PAGES
TIME represents the number of seconds after the simulation has begun that the request was put in. This will be non-negative and not exceed 28800. (A job may finish after this time.)
DOC_NAME is a string with no white space representing the name of the document to be printed. (Each of these will be distinct, within a single test case.)
PRIORITY is a positive integer in between 1 and 100, inclusive, representing the priority of this job, with 1 representing the most important.
PAGES is the number of pages in the print job. It’s guaranteed to be a positive integer less than 1000.
Output Specification

For each printer scenario, print out a header with the following format:

Printer #k:

where k represents the day of the simulation (1 ≤ k ≤ n).

Follow this with a blank line.

For each print job, print out a single line with the following format:
DOC_NAME completed printing at time TIME.
Print out these r lines in the order the jobs finished, ie, in increasing order of TIME.
Implementation Restrictions

Information about the print jobs must be stored in a heap. Your code should have a Heap class that just manages the necessary heap operations. A separate class should be used to run the program.

Sample Input File

2

10
3 Program2.doc 10 5

6 Resume.doc 5 2

7 FantasyFootball.xls 4 20

15 Sudoku.java 8 10

17 PhoneBook.xls 8 20

30 Program3.doc 10 6

31 Book.doc 1 200

100 Grades.xls 3 5

101 Recitation2.doc 7 2
1000 directions.txt 9 1

5
215 a.txt 1 100

231 b.txt 1 200

244 c.txt 1 100

312 d.txt 1 100

1000 e.txt 1 500

Sample Output
Printer #1:
Program2.doc completed printing at time 10.

FantasyFootball.xls completed printing at time 32.

Book.doc completed printing at time 234.

Grades.xls completed printing at time 241.

Resume.doc completed printing at time 245.

Recitation2.doc completed printing at time 249.

Sudoku.java completed printing at time 261.

PhoneBook.xls completed printing at time 283.

Program3.doc completed printing at time 291.

directions.txt completed printing at time 1003.

Printer #2:

a.txt completed printing at time 317.

b.txt completed printing at time 519.

c.txt completed printing at time 621.

d.txt completed printing at time 723.

e.txt completed printing at time 1502.
Making Data
In addition to your solution, you need to make your own data file. Make sure your data file adheres to the specifications in this document. Also, make a thorough set of test cases. Try to come up with as many significantly different scenarios as possible. Remember to test both minimum and maximum cases and any unusual cases you can think of. In addition to being 30% of the grade, the person who creates the most comprehensive (in my opinion) data file will win $20.

Deliverables

Turn in the following over WebCourses:

1) The set of .java files that solves this problem. (Note: My solution has three java

 files: Heap.java, PrintJob.java and PrintQueue.java.)

2) A file with your test cases named printer.txt.

As always, make sure to include ample comments and use good programming style, on top of the requirements that are given in the program description above.

