Computer Science II Spring 2003

Homework Assignment #2

Assigned: 1/29/03

Due: 2/10/03 by midnight over email to your TA

PostfixA Program Evaluator

You will write a program that evaluates a program written in a language called PostfixA. PostfixA is a fairly simple language that only allows assignment statements and integer arithmetic. Your program asks the user for a file containing a PostfixA program. If the file contains a syntactically valid PostfixA program, then your program should output to the screen the value of each variable. If not, then an error message should be printed to the screen simply stating that the program is NOT a valid PostfixA program.

PostfixA syntax

All valid statements in PostfixA are of the form:

<var> = <postfix expr>

and must appear on a single line. (Also, each line of a PostfixA program MUST contain exactly ONE statement.)

The first token of a valid PostfixA statement must be a variable. Here are the rules for valid variables:

1) Must start with a uppercase letter, but NOT the letter L.

2) Can only contain uppercase letters.

3) Must be in between one and eight characters long, inclusive.

4) At most 5 distinct variables can appear in a PostfixA program.

The second token of a valid Postfix A statement MUST BE an equal sign. If this is NOT the second token, then the statement is automatically syntactically incorrect.

The rest of tokens in a valid PostfixA statement must form a valid postfix expression. In PostfixA, the only valid operators are: +, -, *, /, %. All operations are integer operations as performed in Java. All valid operands are either variables or integer literals. All variables initially evaluate to 0 until they are assigned to a different value. All integer literals are strings of the form L####, where the first character is an uppercase L, and the rest of the following characters form an integer. The first character for a negative integer is a minus sign(-). For example, -13 is expressed as L-13 in PostfixA while 7982 is represented as L7982 in PostfixA. The postfix expressions themselves must conform to the standard rules. If you forgot these, please review your CS1 notes.

PostfixA Program File Format

A file containing a PostfixA program should not contain anything but the PostfixA program, with exactly one statement per line. All PostfixA programs should be stored in files with a .pfa extension. Here is an example of a valid PostfixA program:

X = L3 L4 L5 * -

Y = L12 W X + -

Z = Y Z * L3 +

Output Format

If the file entered by the user is not a valid PostfixA program then your program should print the following message to the screen:

The file ***** does not contain a valid PostfixA program.

(***** represents the file containing the program in question.)

If the file is valid, then the value of each variable appearing in the text of the program should be printed out to screen, with one variable per line. Here is an example of appropriate output for the PostfixA program given above:

X = -17

W = 0

Y = 29

Z = 3

There is no stipulation on the order of the variables. Only each variable in the program must appear exactly once in the listing of values. Note that the values on the right hand side of the output are written as normal integers, and NOT in PostfixA syntax!!!

Program Format

Your program should prompt the user to enter a PostfixA file. Then your program should produce the appropriate output to the screen based on the appropriate PostfixA file. Here is an example of how your program should run (user input in italics):

Please enter the name of the PostfixA input file:

test.pfa

X = -17

W = 0

Y = 29

Z = 3

Thank you for using the PostfixA compiler!

Implementation Requirements

You must create a class that implements a stack of integers to help evaluate postfix expressions. Your executable class must be called PFAEvaluator.java. Your program must work with files as specified above. Your program should give a single prompt to the user to enter a file name. There is no need to check to see whether the file name is valid. The TAs will only test your code with files that exist. (But your code should be able to detect invalid .pfa files.) You may tokenize each line using a default StringTokenizer object. (You may assume that the delimiters in our testing file are the same used by the default StringTokenizer object.)

Other concerns:

If anyone finds mistakes or other issues with this programming assignment, please send me email and I will add any necessary adjustments to the assignment as soon as possible. Thanks!

What to turn in:

Your program should contain multiple files each containing a single class. However, only one of those classes should be executable. Call your executable file PFAEvaluator.java. In each file, include appropriate documentation. (You MUST include your name, the date, and a basic description of the class, as well as individual comments throughout the code, and a list of any known bugs.) You should turn in each .java file you create for your program, as well as a testing/debugging log. This log should be a separate text file that logs which cases you have tested your program with, the outcome of the test, and then the change in the code that you made based upon this test. There is no need to include EVERY test case in this log; rather you should only record the test cases that either proved that a certain part of your code worked, or helped you isolate a particular error you had.

