Spring 2007 Computer Science II

Program 5: How Many Perfect Ways to Work?
Assigned: Monday 4/9/07

Due: Friday 4/20/07 (NO LATE PROGRAMS!)
The Problem

Arup enjoys the beauty and perfection in nature. Unfortunately, Arup lives in a huge city that is mostly devoid of the trees and serenity of nature. Instead, Arup's city has many, many roads set up in a perfect grid, so he must settle for finding perfect paths within this grid. In the grid, a path consists of a sequence of movements in one of four possible directions: north(N), south(S), east(E) or west(W). Assume that each movement in a direction is a single block. A perfect path does not contain any movements in directly opposite directions. Thus, the sequence of movements NNENE forms a perfect path, but the sequence NEESN does not, since it contains both a north and south movement. To complicate matters, there are some street intersections that have graffiti which Arup considers imperfect. Thus, any path that goes through these intersections is not a perfect path. Given grid coordinates for Arup's starting location and destination, as well as coordinates of all the imperfect intersections Arup is to avoid, you are to determine the number of perfect paths Arup can take.

Note: Please read the input for the program from path.in automatically without prompting the user for the input.
Input Format (for path.in)
There will be several sets of input. The first line will contain a single positive integer n (n < 100) describing the number of test cases in the data set. The first line in each data set has a single integer m (0 (m < 100), which represents the number of intersections in the town for that particular data set that Arup must avoid. The following m lines contain the coordinates of the m intersections to avoid. All x and y coordinates will be non-negative integers less than 200, with the x coordinate appearing first on a line, followed by the y coordinate, separated by a single space. The next line in the data set will be a single positive integer p (0 < p < 10) that represents the number of trips for which you will be calculating the number of perfect paths for that data set. The last p lines of the data set contain the p trips. Each line will contain two pairs of (x,y) coordinates. The first pair will be the coordinates for Arup's starting location and the second pair will be the coordinates for Arup's destination. Each coordinate on each line is separated by a single space from the previous and subsequent coordinates. You are guaranteed that none of Arup's starting locations or destinations will be an intersection he is supposed to avoid. All of these coordinates will also be non-negative integers less than 200 and be separated by spaces on each line.

Output Format

For each data set, you will output a single line header of the following format:

Data Set k:

where k is an integer in between 1 and n, inclusive.

Follow this with a blank line, and then p lines, each with one of the two following formats.

 Test Case c: Arup can take P perfect paths.

 Test Case c: Arup can take 1 perfect path.

where c is an integer in between 1 and p, inclusive and P will be a non-negative integer. Note that P may very well exceed the storage of an int or a long. Furthermore, you will get some extra credit for using your own BigInteger class. Use the second format only if P=1. Please indent each of these lines exactly 2 spaces from the left margin. Also, leave a blank line in between data sets.

Sample Input

2

4

2 2

3 5

1 0

4 4

5

0 0 1 10

0 1 2 3

2 1 0 5

0 1 4 5

0 0 0 10

3

1 1

2 2

3 3

1

4 4 14 7

Sample Output

Data Set 1:

 Test Case 1: Arup can take 10 perfect paths.

 Test Case 2: Arup can take 3 perfect paths.

 Test Case 3: Arup can take 5 perfect paths.

 Test Case 4: Arup can take 0 perfect paths.

 Test Case 5: Arup can take 1 perfect path.

Data Set 2:

 Test Case 1: Arup can take 286 perfect paths.
Alternate Assignment Opportunity
If you'd prefer to propose your own program #5, you can do it. You must work in a group of two and produce a program that solves some sort of problem you have devised. (Or, someone else can devise the problem.) Your problem must be of reasonable difficulty according to me (Arup). Your solution must include at least 500 lines of code and incorporate ideas that are similar to those taught in the class. In particular, your solution must incorporate a data structure or algorithm that is well-suited for the problem at hand and makes an improvement upon the "default" or "trivial" solution to the problem. (Once again, I will be making that determination. If you'd like to take this option, you must come and see me in my office and tell me your idea. If I like it, I'll approve the idea and you can do that instead of the program given above.

Grading Details

Your assignment will be graded upon the three following criteria:

1) Correctness

2) Use of dynamic programming

3) Documentation and Style

Deliverables

If you solve the given problem, please turn in a file called Path.java (and possibly a file called BigInt.java) over WebCT by the due date. If you solve your own problem, turn in all necessary .java files over WebCT by the due date. Only one group member must turn in these files. This group member will be designated when the group meets with me to get their idea approved.
