COP 3503H: Program 3

Assigned: 10/7/04 (Thursday) Due: 10/20/04 (Wednesday)

Part A: You are to write three classes that you will use for future assignments:

1) A generic Stack class
2) A generic Queue class

3) A generic Linked List class

Implement both the Stack and Queue using a linked list. (You can do this in one of two ways: Either, simply have one of two Node objects as instance variables in your Stack and Queue class, OR have one Linked List object as an instance variable in your Stack and Queue class.)

Here's is a generic Node class to use:

public class Node {

 public Object obj;

 public Node next;

 public Node(Object o) {

 obj = o;

 next = null;

 }

}

Here is a list of the prototypes of the methods you need to write for each of the classes:

Stack

1. public Stack(); // Creates an empty stack object.

2. public void Push(Object obj); // Pushes obj onto the stack object.

3. public Object Pop(); // Pops the Object off the top of the stack and returns it.

4. public Object Top(); // Returns the Object at the top of the stack w/o popping it off.

5. public boolean Empty(); // Returns true iff the stack is empty.

Queue

1. public Queue(); // Creates an empty queue object.

2. public void Enqueue(Object obj); // Enqueues obj to the back of the queue object.

3. public Object Dequeue(); // Dequeues the Object at the front of the queue object.

4. public Object Front(); // Returns the Object at the front of the queue w/o dequeing it.

5. public boolean Empty(); // Returns true iff the queue is empty.

LinkList

1. public LinkList(); // Creates an empty linked list object.

2. public void addToFront(Object obj); // Adds obj to the front of the linked list object.

3. public void addToBack(Object obj); // Adds obj to the back of the linked list object.

4. public Object deleteFront(); // Deletes and returns the Object at the front of the linked list.

5. public Object deleteBack(); // Deletes and returns the Object at the back of the linked list.

6. public boolean Empty(); // Returns true iff the linked list object is empty.

7. public void addInOrder(Object obj); // Adds obj in order of the linked list object based upon

// the lexicographical order of the String representation of obj. (Note: I chose this because

// toString is available in the Object class, but compareTo is not.)

Part B: McDonald's Simulation

Create two classes: a Product class and a Customer class. Each object in the Product class will store the name of the product (a single string) and the time that product was created (the time must store the hour and minute of when the object was produced. The hour ranges from 0 to 23 and the minutes from 0 to 59.) Each object in the Customer class will store the first and last name of the Customer (both strings), what single item they would like to eat (a single string) as well as what time they arrived in line.

Note: It may make sense to create a Time class.

You will write a menu driven program that gives the user the following choices:

1) Enqueue a customer into line 1, 2 or 3.

2) Advance one minute in time.

3) Quit

To enqueue a customer into line, you must first ask which line they want to enter, 1 2, or 3. Then ask them their first and last names, respectively. Then ask the customer what product they would like to order. The time the customer entered line is automatically determined based on how many times option 2 was chosen before this specific entry.

To advance one minute in time the following has to happen:

Have the cashier in each line service the customer at the front of the line. This involves "getting" the order from the customer (which is stored in the customer object). There will be 5 stacks of food items for the cashier to grab from. If the item the customer wants is at the top of any of these stacks, this item should be given to the customer. Assume that serving a customer in this manner takes exactly one minute. Also, make note of two pieces of data: 1) The amount of time the customer waited in line, 2) How old the food the customer was served is.

If the food the customer wants is NOT on the top of any of the five stacks of food, put in an order to the "chef" for the food. This order takes three minutes to complete. To be safe, the "chef" cooks two of the item being ordered. When the items are done cooking, one goes directly to the customer while the other gets added to the next stack. (Keep track of which stack the previous item was added, and advance to the following stack, if the previous stack was the last stack, start back at the beginning stack.)

Note that if a cashier is busy waiting for a food item to be cooked at a particular minute, they can not move onto the following customer. (This rule is inspired by some of my previous McDonald's experiences =))

At the beginning of your program, assume the time is 11 AM. Also assume that each of the 5 stacks of food starts off with a single "BigMac" in it that was created at exactly 11AM. Please use your Stack and Queue classes in implementing this program.

Final Touch

It's nice when a cashier remembers your previous order and simply asks you if you want that item again. Each time an order is served, if it is the first time that person has ordered, then add a node to a linked list (in order) that stores the person's name and their order. If the person has ordered previously, then right after asking their name, prompt them with a message of the following format:

Would First Last like a Item again?

where First Last is the first and last name of the person, and Item is the name of the item they ordered the last time they were in line. If the person says yes, continue the order, if the person says no, go ahead and ask them what they would like to order.

Also, when the program exits, print out the average wait time for all the customers as well as the average "age" of the food they received.

Sample Output (User input in bold italics)

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

1

What line does the customer want to be in(1,2 or 3)?

2

What is the first name of the customer?

Arup

What is the last name of the customer?

Guha

What does Arup Guha want to order?

Fries

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

2

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

1

What line does the customer want to be in(1,2 or 3)?

2

What is the first name of the customer?

Ross

What is the last name of the customer?

Byers

What does Ross Byers want to order?

BigMac

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

1

What line does the customer want to be in(1,2 or 3)?

1

What is the first name of the customer?

Justin

What is the last name of the customer?

Miller

What does Ross Byers want to order?

BigMac

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

2

Justin Miller from line 1 has been served BigMac.

The BigMac was 2 minutes old.

Justin Miller waited for 1 minute.

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

2

Arup Guha from line 2 has been served Fries.

The Fries was 0 minutes old.

Arup Guha waited for 3 minutes.

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

2

Ross Byers from line 2 has been served BigMac.

The BigMac was 4 minutes old.

Ross Byers waited for 3 minutes.

Welcome to McDonald's!

Please choose one of the following options:

1) Enqueue a customer.

2) Advance one minute in time.

3) Quit

3

Thanks for choosing McDonald's!

The average wait time per customer was 2.33 minutes.

The average age of the food was 2.00 minutes.

