Computer Science II Summer 2002

Homework Assignment #2

Assigned: 9/24/02

Due: 10/8/02 by midnight over email to your TA

Part I: Longest Increasing Sequence

You were introduced to the longest increasing sequence problem in lecture. First, write a recursive method to solve the problem. You may assume that all sequences contain only positive integers. Here is the prototype for the recursive method:

public static int maxincseq(int [] numbers, int index, int min);

This method should find the length of the longest increasing sequence in the array numbers that starts at or after array index index and has all values greater than or equal to min. For example, let the array numbers store 8, 2, 6, 4, 7, 9, 5, 3, 10, 8, index be 2, and min be 5. In this situation, the method should return 4, since the longest increasing sequence starting at index 2 or later with all values greater than or equal to 5 is the sequence 6, 7, 9, 10.

Once you have written the recursive method to solve this problem, write a dynamic programming solution. This method should simply find the longest increasing sequence for the entire array of numbers. Thus, the method should only take in one parameter. Here is the prototype:

public static int maxincseqdyn(int [] numbers);

Please write both of these methods as part of the MIS class.

Part II: Quick Sort

Write a partition method and a quick sort method to sort an array of integers. Here are the prototypes you should use:

public static int partition(int [] numbers, int start, int end);

This method partitions the portion of the array numbers starting from index start and ending at index end using the partition element numbers[start]. The method should return the value of the index that the partition element gets stored after the partition is completed.

public static void quicksort(int [] numbers, int start, int end);

This method quicksorts the elements in the array numbers starting from array index start to array index end. Thus, in order to actually quicksort the entire array, you must make the call quicksort(numbers, 0, numbers.length-1).

Run your quicksort on arrays of size 100, 1000, 10000, and 100000. For each size, run your method on an array sorted in descending order and three randomly filled arrays. For each of these runs, calculate the average running time for each, using the System.currentTimeMillis() method. 

Once you have recorded the raw values, attempt to draw conclusions about Quick Sort's running time on data sorted in reverse order as well as data sorted in random order, in terms of the number of elements being sorted.

What to turn in: Turn in the MIS class with the two static methods described in part I. Turn in the QS class with the partition and quicksort methods. Include extra documentation if these methods don't have the same prototype as the above methods. Also, include a chart of the average running times for each of the 4 array sizes on the two types of input (descending order and random.) Finally, analyze the data collected and attempt to draw conclusions about the running time of quicksort of random data and data sorted in reverse order. Briefly summarize your findings. Include the last piece of this assignment as an attachment (or two) in the email to your TA.

