Spring 2007 Computer Science II

Program 4: File Compression using Huffman Coding

Assigned: Wednesday 3/21/07

Due: Friday 4/6/06
The Problem

You will be required to write a method that takes in the frequency of each byte in a file and then creates the Huffman codes for each of the bytes. In particular, you must write a method in the class Huffman with the following signature:


public static boolean[][] makeHuffmanCodes(int[] freq);
The array freq will be of size 256 such that in index i, the frequency of the byte with value i-128 from the specified file will be stored. (This system has been done because the value a byte ranges from -128 to 127 but array indexes must start at 0.)

You must take this frequency information, create a Huffman tree, and then assign Huffman codes to each byte. Bytes that do not appear in the file at all should NOT be assigned a Huffman code. Your method will return this information in a two-dimensional boolean array. The number of arrays in this two dimensional array will be 256. Each array will store the Huffman code for that corresponding byte. If there is no such code, then the array should be set to null. Otherwise, the array should be created to be the length of the Huffman code in bits, and each value should be set with 1 corresponding to true and 0 corresponding to false. 

For example, if the Huffman code for byte -120 should be 00101, and the name of the boolean[][] array is codes, then the following values should be set in codes:

codes[8][0] = false; codes[8][1] = false; codes[8][2] = true, codes[8][3] = false; codes[8][4] = true;

Also, codes[8].length must be equal to 5.

Your solution will be used to create an application that uses Huffman coding to compress and uncompress files. (The TAs will write extra code that will use yours for this purpose, so that you can see the practicality of the algorithm in use.)
Other Implementation Specifications

You must implement your own binary heap class and your own Huffman tree class. In particular, your binary heap must be able to store Huffman tree elements. (It might be easiest for you to store Comparables in your binary heap class.) Beyond these two requirements, the rest is up to you. You may add other classes as well.

Grading Details

Your assignment will be graded upon the three following criteria:

1) Correctness

2) Implementation of both a binary heap class and a Huffman tree class. Your classes must support the standard methods for these two classes. (We've covered these for the heap and your Huffman tree class must have a constructor and a method that "merges" two Huffman trees and returns the merged product.)

3) Documentation and Style

Deliverables

You must turn in at least three files: Huffman.java (which contains the static method makeHuffmanCodes), HuffmanTree.java (which deals with the mechanics of a Huffman Tree object), and BinaryHeap.java (which deals with the mechanics of a Binary Heap object.) You may submit other supporting files if necessary. (Most likely, you might create a HuffmanTreeNode.java file as well.)
