Computer Science II Summer 2002

Homework Assignment #2

Assigned: 5/29/02

Due: 6/12/02 by midnight over email to your TA

Part I: Towers of Hanoi

Write a recursive method that outlines the moves for the Towers of Hanoi problem. Here is the method prototype to use:

public static void towers(int start, int end, int number);

The parameters start and end have to either have the value 1, 2 or 3. These two parameters specify the starting and ending poles for the tower. Thus, they must also be distinct. Finally, the parameter number specifies the total number of disks to be moved from the tower start to the tower end. Your method must produce output which specifies each move in the correct order. To specify a move, you must print out which disk number is being moved from which tower to which tower. Here is sample output produced by the method call towers(1,3,4):

Move disk #1 from pole 1 to pole 2

Move disk #2 from pole 1 to pole 3

Move disk #1 from pole 2 to pole 3

Move disk #3 from pole 1 to pole 2

Move disk #1 from pole 3 to pole 1

Move disk #2 from pole 3 to pole 2

Move disk #1 from pole 1 to pole 2

Move disk #4 from pole 1 to pole 3

Move disk #1 from pole 2 to pole 3

Move disk #2 from pole 2 to pole 1

Move disk #1 from pole 3 to pole 1

Move disk #3 from pole 2 to pole 3

Move disk #1 from pole 1 to pole 2

Move disk #2 from pole 1 to pole 3

Move disk #1 from pole 2 to pole 3

What to turn in: An attached file, Hanoi.java, with the method towers with the prototype above, and a main method that has one line and makes the method call towers(1,3,4). Failure to match the prototype given may result in a deduction of points, even if you method works correctly.

Part II: Experimental Algorithm Analysis

Consider the following method included below. Try to compute it's running time in terms of the constant N. (Just try to do this experimentally. There is no need to analyze the algorithm. For some extra credit, you may try to give the theoretical running time of the method.) Keep in mind that the answer to this question is not obvious. In fact, it is quite difficult. If you can not ascertain the correct theta bound for the method, you will get a good deal of partial credit for narrowing down the answer. (If you can say that the algorithm is ((n) but O(n2) for example, you would definitely earn partial credit. The tighter the range you show, the more partial credit you get.) Here is the code:

import java.util.Random;

import java.lang.Math;

public class question {

 public static final int N = 100;

 public static void test() {

 Random r = new Random();

 int size = (int)(Math.sqrt(N))+1;

 int[][] values = new int[size][size];

 int[] sizes = new int[size];

 for (int i=0; i<sizes.length; i++)

 sizes[i] = 0;

 for (int i=0; i<N; i++) {

 int temp = Math.abs(r.nextInt()) + 1;

 int location = temp%size;

 if (sizes[location] == values[location].length) {

 int[] storage = new int[values[location].length];

 for (int j=0; j< values[location].length; j++)

 storage[j] = values[location][j];

 values[location] = new int[2*storage.length];

 for (int j=0; j< storage.length; j++)

 values[location][j] = storage[j];

 }

 values[location][sizes[location]] = temp;

 int k = sizes[location];

 while (k > 0 && values[location][k] < values[location][k-1]) {

 int t = values[location][k];

 values[location][k] = values[location][k-1];

 values[location][k-1] = t;

 k--;

 }

 sizes[location]++;

 }

 }

 public static void main(String[] args) {

 test();

 }

}

What to turn in: For the write up of this question, you should ONLY turn in a chart of running times for different values of N, along with a writeup explaining what theta bound your experimental results indicate for the algorithm. This chart and writeup should be put in your email as either a textfile attachment OR a Word doc attachment.

Part III. Quick Sort

Write a quicksort method with the following prototype:

private static void quicksort(int[] a, int low, int high);

Unlike the code shown in your text, your method should NOT call an insertion sort in the terminating condition. Instead, your terminating condition should be sorting an array of zero or one element. Finally, create the short method:

public static void quicksort(int[] a){

 quicksort(a,0,a.length-1);

}

What to turn in: A .java file, Quicksort.java that contains the two methods outlined above. No main should be included in this file. Also, make sure that the prototypes match the ones given above. Failure to match these prototypes may result in a deduction of points, even if you methods work perfectly correctly.
