Fall 2006 Computer Science II Program 1: Mountain Climbing

Assigned: Thursday 8/31/06, 

Due: Friday 9/8/06

The Problem
You are a mountain climber and like charting the segments of your various hikes. At various points of your hikes, you record your altitude. At the end of a hike, you have recorded a list of integers standing for the different altitudes (in feet) you were at during your journey, such as this example:

137, 251, 202, 95, 129, 100, 451, 330, 216, 12, 137

You are specifically curious about the portion of your climb that had the greatest increase in elevation. A portion of your climb is defined as any contiguous subsequence of the values in the list of the entire climb. In the example above, the portion of the climb with the greatest increase in elevation is

95, 129, 100, 451

which has a total increase in elevation from start to finish of 451 - 95 = 356 feet.

Your goal is to write a program that creates random input data of varying sizes and write two solutions to the problem and test both solutions for various input sizes on randomly created data. One solution should be a brute force θ(n2) algorithm while the other should be a more crafty θ(n) solution. (It is up to you to devise both of these solutions. Write two separate static methods to implement the two algorithms.)

After you finishing coding up each solution, you should attempt to experimentally gauge the run-time of each of the two solutions. Remember that you should run test cases of each particular input size many times to get a more accurate run-time count. (Note that it may take a while to get multiple runs for the brute force algorithm for the largest values of n, so be patient. You don't need to repeat these particular test cases as many times.)
You should produce a table as follows:

	Input Size
	Time – Brute Force Alg.
	Time – Faster Solution

	1000
	
	

	5000
	
	

	10000
	
	

	20000
	
	

	50000
	
	

	100000
	
	

	200000
	
	

	500000
	
	

	1000000
	
	


Do your experimental results correspond to your theoretical analysis? For the ease of testing, simply prompt the user for which algorithm to run, the input array size, and the number of times to run the test. Then carry out the designated task and report the average run-time for given input size.
Implementation Specifications

1) You must write a method that takes in an integer n and returns a randomly created integer array of size n. You get to choose the distribution of random numbers. Here is the method signature you need to implement:
public static int[] randomArray(int n);
2) You must write a method which implements the brute force algorithm that takes in the array of elevations and returns an integer representing the largest increase in altitude in any contiguous subsequence of values as defined above. Here is the method signature you need to implement:
public static int getMaxElevationBF(int[] elevation);
3) You must write a method which implements a θ(n) solution to the problem that also takes in the array of elevations and returns an integer representing the largest increase in altitude in any contiguous subsequence of values. Here is the method signature you need to implement:

public static int getMaxElevation(int[] elevation);
Note: It is imperative that you follow these method signatures because this is how your TA will test your methods to see if they work properly or not.

Deliverables

1) A java file mountain.java that solves the specified problem according to the restrictions stated above.

2) A text file analysis.txt which shows the results of the experimental run-times of both algorithms, an analysis of that data, and a justification for the theoretical run-times of both algorithms. Also comment on whether the experimental data corroborates the theoretical results.
