Computer Science II Summer 2002

Homework Assignment #1

Assigned: 8/20/02

Due: 9/3/02 by midnight over email to your TA

Part I: Adapted Binary Search

You will write a method that searches for a value in a sorted array that works similar to a binary search. The only difference is rather than searching the middle array location for the value, use interpolation to determine where to search. Here is an example: Let's say the current "low" index to search in is 5, and the current "high" index to search in is 23 in the array A. Let's say we are searching for the value 60 and that A[5] = 10 and A[23] = 85. Since 60 is 2/3 of the way in between 10 and 85, we want to check the array index that is 2/3rd of the way in between index 5 and 23. This index is 5 + (23 - 5)*2/3 = 17. So, when you check this index, you will still, either find the value, adjust high, or adjust low. Write your code so that no infinite loops occur. (I know this is a given, but depending on how you write your code, there is a danger of this occuring, so be aware of that.) Here is a prototype of the method you are to write:

//Preconditions: values is sorted in ascending order and contains no repeat elements.

//Postconditions: If target is stored in the array values, the array index where target is stored is

// returned. Otherwise, if target is NOT stored in values, the method returns -1.

public static int Search(int[] values, int target);

Write your method in the file BinIntSearch.java.

a) If repeated values are allowed in the array, what is the worst case running time of the algorithm described above?

b) Provide data that would cause the algorithm to achieve this worst case running time.

(Answer these questions in a comment at the bottom of the BinIntSearch.java file.)

Part II: Sock Matching Problem

Write a Java program that reads in a file that contains information pertaining to the contents of a sock drawer. The goal of your program is to output how many matching pairs of socks the drawer contains as well as how many pairs of each type of sock there are in the drawer. The first line of the file will contain an integer that is the total number of socks in the drawer. Every line thereafter will contain a two word description of a sock in the drawer. The first word in the description is a color and the second word in the description is a separate adjective. (The two words will be separated by a single space.) Two socks form a pair if both the color and second adjective match. Here is a sample file:

11

Blue Casual

Gray Athletic

Blue Athletic

Blue Casual

Red Athletic

Green Casual

Red Athletic

Blue Casual

Blue Athletic

Red Athletic

Red Athletic

Your program should prompt the user for the name of the file containing information about the sock drawer. Then your program should output all matching pairs. Here is how the output corresponding to the file above should look:

4 matching pairs

1 pair Blue Casual

2 pairs Red Athletic

1 pair Blue Athletic

Make sure to pay attention to whether or not the word "pair" should be singular or plural. Also, you are allowed to output the individual types of pairs in any order. (So it would have been okay to list the Blue Athletic pair first in the example above.)

Write your program in the file Socks.java

Extra Credit extension: Define matching to be if EITHER the color OR second adjective are identical. Now, output the maximum number of matching pairs of socks, listing each matching pair. For the example given above, one possible correct output is:

5 matching pairs

Blue Casual and Blue Casual

Blue Casual and Green Casual

Blue Athletic and Blue Athletic

Red Athletic and Red Athletic

Red Athletic and Red Athletic

(Since the socks may not be identical, the exact type of both socks needs to be listed to name the pair. To simplify things, there is no need to count how many of each type of matching pair there is.) Once again, the order of the output doesn't matter.

What to turn in

Turn in the files BinIntSearch.java and Socks.java as attachments to your TA. Please follow all the specifications given above. DON'T FORGET TO PUT ADEQUATE COMMENTS IN YOUR CODE!!! (A portion of your grade depends on your documentation and style.)
