COP 3503H Program 4: AVL Tree

Assigned: 10/27/04 (Wednesday) Due: 11/10/04 (Wednesday)

Create a class OrderedPair that has two private instance variables: x and y, that are both doubles. The class OrderedPair will implement Comparable. So, here's a skeleton of the class. You just need to fill in the constructor and the compareTo method. The integer you should return should be -1 if the current object is closer to the point (0,0) than the parameter passed in, and 1 if the current object is farther from the point (0,0) than the parameter passed in.

public class OrderedPair implements Comparable {

 private double x;

 private double y;

 // Constructor

 public OrderedPair(double x_val, double y_val) {

 }

 // Returns a negative integer if obj is less than

 // the current object, 0 if it's equal, and a positive

 // integer otherwise.

 public int compareTo(Object obj) {

 }

}

Now, create an AVL Tree class that stores OrderedPair objects. Your AVL Tree class should have the following functionality:

1) insert an ordered pair

2) delete an ordered pair

3) print out the tree

In order to accomplish 3, print a list of each node in the tree, one node per line including the unique location of each node. The unique location of each node will be equal to the value we assigned each node in the construction of a binary heap. (So, the root node is 1, its left child 2, its right child 3, etc.) Consider the following example:

 (6,4)

 / \

(3,3) (5,7)

 / \ \

 (2,3) (5,3) (8,4)

 / \

 (4,4) (5,5)

For this tree, you should print out something like this:

1. (6,4)

2. (3,3)

4. (2,3)

5. (5,3)

10. (4,4)

11. (5,5)

3. (5,7)

7. (5,5)

The beginning number on a line represents the location of the node in the tree and the ordered pair following that represents the value stored in that location. This particular printout was generated using an in-order tree traversal. You can choose to use that method or another one. If you choose another one, designate in your comments the method you are using to traverse the tree while you print it.

Finally, in your AVL Tree class, provide a main that allows the user insert and delete nodes, starting from an empty tree and then also allows the user to print out the tree at any point in time. Simply provide the user with a menu. For the insert choice, prompt the user for both the x and y coordinates. For the delete choice, do the same.

I am sure I've forgotten something, but ask me any questions if you need clarification!

