
COP 3502 Recitation Sheet: Recursion

Directions: Each of these questions is from either a past Foundation Exam or one of my past

exams. They were created to be written on paper. However, each of these can be coded on a

computer and tested. I strongly recommend first coding on paper, but then transferring to

the computer and testing the function until you are convinced it works.

Each of the following questions asks you to write a recursive function.

1) The code below returns the number of zeros at the end of n!

int zeros(int n) {

 int res = 0;

 while (n != 0) {

 res += n/5;

 n /= 5;

 }

 return res;

}

Rewrite this method recursively:

int zeros(int n);

2) Write a recursive function that returns the sum of all of the even elements in an integer array

vals, in between the indexes low and high, inclusive. For example, for the function call

sumEven(vals, 3, 8) with the array vals shown below, the function should return 24 + 8 + 10 = 42,

since these three numbers are the only even numbers stored in the array in between index 3 and

index 8, inclusive.

Index 0 1 2 3 4 5 6 7 8 9

Vals[i] 15 13 28 19 24 8 7 99 10 14

int sumEven(int vals[], int low, int high);

3) Consider the following game. You are given a positive integer, n. Your goal is to change that

integer to a number 0 or less. You are allowed two possible operations to reduce your number: (1)

subtract 10 from it, (2) integer divide it by 3. Write a recursive function that calculates the

minimum number of operations you have to apply in sequence to reduce your number to 0 or less.

(For example, if your number was 19, you could divide it by 3 to obtain 6 and then subtract 10 to

obtain -4, to obtain the goal in 2 steps. There is no way to do this in 1 step, so the correct answer

is 2 for this case.) Hint: recursively try both moves, see which one "wins" the game for you

more quickly and build off that move.

int minMovesToWin(int n);

4) Mathematically, given a function f, we recursively define fk(n) as follows: if k = 1, f1(n) = f(n).

Otherwise, for k > 1, fk(n) = f(fk-1(n)). Assume that a function, f, which takes in a single integer

and returns an integer already exists. Write a recursive function fcomp, which takes in both n and

k (k > 0), and returns fk(n).

// Assume this is written already.

int f(int n);

// This is what you write.

int fcomp(int n, int k);

5) Write an efficient recursive function that takes in a sorted array numbers, two integers, low and

high, representing indexes into the array, and another integer, value, and returns the index in the

array where value is found in the array in between index low and high, inclusive. If value is NOT

found in the array in between indexes low and high, inclusive, then the function should return -1.

int search(int numbers[], int low, int high, int value);

