
COP 3502 Quiz #2 Version A (Recursion, Linked Lists, Stacks, Queues, SLMP)

Last Name: ___________________, First Name: ______________________

Circle Your Recitation: F6:30 T1:30 T2:30 T3:30 T4:30

1) (5 pts) In the Towers of Hanoi code shown in class, a transcript of the moves to solve the puzzle was

printed. Write a related function that adds up the sum of the disk numbers for each move for solving the
puzzle for n disks. For example, if n = 3, your function should return 11 because the disks that move are

disk numbers 1, 2, 1, 3, 1, 2 and 1, respectively and 1 + 2 + 1 + 3 + 1 + 2 + 1 = 11. Notice that the sum to

the left of the three and the right of the three are the same, so it's okay to calculate it once and multiply that
by 2.

int sumTowerDisks(int n) {

}

2) (5 pts) Evaluate the following postfix expression, showing the state of the stack at each of the indicated

points.

 A B C

3 5 2 2 * - 3 2 * + * 9 + 5 /

 A B C

Value of the Expression: ____________

3) (8 pts) Consider using a linked list of digits to store an integer. Specifically, the integer 2471 would be

stored as the following linked list: 1 → 7 → 4 → 2. (Thus the first node stores the units digit, the second

node the ten's digit, the third node the hundred's digit and so forth.) Write a recursive function that takes in

a pointer to the front of a linked list storing an integer and returns the numeric value of the list. (Hint: To
solve the problem carefully think about the value generated by the list 7 → 4 → 2 in relation to the number

above. Also, an empty list has a value of 0.)

typedef struct numNode {

 int digit;

 struct node* next;

} numNode;

int getValue(numNode* number) {

}

4) (5 pts) What problem does the function below solve? Namely, what is the return value of the function

in relation to the input parameters? Your answer should be a regular sentence or two in English and NOT

a literal translation of the code. The latter will receive no credit!

// Pre-condition: array is size n and 1 <= k <= n.

int mysteryA(int* array, int n, int k) {

 int res = 0, tmp;

 for (int i=0; i<k; i++)

 res += array[i];

 tmp = res;

 for (int i=0; i<n-k; i++) {

 tmp = tmp - array[i] + array[i+k];

 if (tmp > res) res = tmp;

 }

 return res;

}

5) (5 pts) The permutation algorithm shown in class generates the permutations of {0, 1, 2, …, , n-1} in
lexicographical order. Which permutation does the algorithm generate after the permutation shown below?

3, 7, 6, 2, 9, 4, 8, 5, 1, 0

____ , ____ , ____ , ____ , ____ , ____ , ____ , ____ , ____ , ____

6) (7 pts) In the implementation of a queue using an array shown in class, the following four components
formed the structure storing the queue:

elements - an array storing the items in the queue.

front - index of the array that is the front of the queue

numElements - number of elements currently in the queue.

queueSize - currently allocated space for array elements.

Assume that the queueSize is initially set to 10 and that the following code segment is run:

struct queue* MyQueuePtr = malloc(sizeof(struct queue));

init(MyQueuePtr);

for (int i=0; i<9; i++) {

 enqueue(MyQueuePtr, i+1);

 enqueue(MyQueuePtr, 2*(i+1));

 int tmp = dequeue(MyQueuePtr);

}

Show the value of each of the four components of the struct pointed to by MyQueuePtr right

after this code segment is executed. Note: for the array, ONLY fill in the slots that have

meaningful data. Leave blank any spots that aren't storing something in the queue.

front ____ numElements ____ queueSize ____

index 0 1 2 3 4 5 6 7 8 9

elements

Scratch Page - Please clearly label any work on this page you would like graded.

