l/\)e'ue Jeen bf'Wd h@ where eaikt fide /?45, af mmfj fuie cﬁ/{dmm:

Shrud- node §
Iﬂ‘}' dad‘a}

Strud- nvde irle(l{(&'fiJM"/'

y

7@@3 }Dp?c 5 the Trie y Whidh s frmmmec{ “free (“5 in mf—f_’-ﬁu‘i‘l).

“s0 4

H“WW", we wWill ek hram this fraditen. and ?ﬂnamo& t "IL[J
+0 olrsjrirgms"\ it tha T Treﬁ dabo Structunt

Thee a. s seper GRAEY chareferstics o Aries fhat I want— fo mAodice
. NV sfrai M away
U I
nede has 26 c!n'/a[rm {0"} rather,

F"ﬁ*&j, o frie is & hee in which evetl
oL which Mvaj be N“Ll-):

b child PWH{FS sime , of ""”;

S-}rud('Jl_rif', Node f
imL cvm’r}
ghrwek trieNode childrtn [%]; %m am(fjop— 26 triellode fwﬂ%

{.

('\\
)ecmdl(tj, alj(hntjk we will use Tries 1 rzpmmf’ SHP@S, Phe sﬁ:‘/(yg we et
infe a frie are nob Stred oS dafo inside sur nodes, Tnstead, the

Sfﬁ"é[that o nade cepresents 1S based on The Qaﬂa you fake
Jo reah fhat nude.

Nole: Tie m{ejcfr valne M euc wode 15 fle @ ‘
— yalur of— the strucks “coud” Loeld ., |

; . "
ot P the drie confarin ed the emp g ﬁ (“),
E../ 'H,V; VL {‘IM’. b@l‘t urru[c{ Lg it 2€ro0

o lb’(:")

Thi is the_ socle al coot =2 children pS‘] _

Ths nade. represeafs "P " becaust p 13 the [6™
leHer of e alphabet. T we stact

mth o%m Z&;?f 'P' S nregor # 15
G}?r letter 'aﬁ)

Nele: Eacr nede has wany children

T fd T oam b dffff'fy,
frr the sake of c[arﬁ
and s;mp;.f‘u}J. We asswme st

. ClnvaVL are. UL

The big-oh runtome (e insectim s & e s Olk) o(k)
The big-ol cun bime, e (wkp in 4 tric s o(k) 00)
O(k) 0)

((JO& witl see The bﬁ-ok run fone Bye deletnn & also®

K Wheee. ke &5 the leUmdp

SM& Appr‘cq{'irﬂy d\‘d’ﬂMC) (sfe!l cheoﬂ}
’]' l\ﬂ Shw:j we'e C(.p.l[v Nm/l.

document werd conuf / word Wﬂfj
Dn\ci all wyrds be :‘nm‘ﬂ Wit Wprepi,t
wied ?mlio‘nm %r @P’\’(‘j / kzﬁfj / Joice rfcgnfhm&%eobth- Joxt- Pro(fssfztj)

5\0‘ .1.____9- the wied "apf{c“ has foen iaserted M gaur 1’7’!'9(/ww (oA (749(
acess /s coant Feld 7 |
The lethe W ‘o e pands h index O wm fee childen MH@S. 'f" crrespinds
fo index [§. 'j ' Cm’csfmds h index “, and ¢ (omspomﬁ fo incley 4.

S‘*, we (ould actess fhat Peld tie 50
e >childen [0 > chichen [15] = chitdeen [15> chilbke []2 hildren [47) = cownt

[,%qm(M assumes “apple™ s in the frie, o we don't have F ww(“j
Obruk Sfijpou(l{g)

(ohat i€ we don't brmn fhe indey o P’ ot Tle hy of our heuds, 7‘%;7/17. How

fen W gaf}’ Jo "ap?fe w7

Tk > childhe ['a‘ A]-? childreq [”a'-'a‘z "" GMM‘L[p- h‘]acﬁilcﬂf\?n [- ’a‘l—‘?du 'fdrfm[‘o'~ '&‘I-”CO.M)L

Or , it jenera“d Spcaﬁc‘/g ' G’F‘»’M Some G/’iar vqn‘ab(e{ C, we can AR Rl
%m‘f?f‘o@ the @dJQ 50"@7%[’:7 g 'ﬂicmL charagter {»j aciessify

*?Cbﬂm'k[c - ’o\‘]

Fm : Delehgl Sfl'rr{j 5

r)\upposa Wwe Llﬂwt A werd (/&-ewem
hic witn fhe (%uow,ﬁ ords
'eIJ (x 1)
gellies ('1 H3

J@(qlp sh 57) _
Ud r‘Sl\fg (L{ Od
a_P/nML (x 'X (12)

apf @;) m(&*
b(1)

To delete "aplomb”, we can derrement
He count af ds feemiral nde o wr,

then celele all the nuds up o (and
im(“dnfj) The ,6 Sine ﬁ&a hawt i ¢lnllren.

‘ L
@ To deleke ome ocurmence of "jelly | we s j ly decrepond The aunt iebne 471 :)
feeminal ndde. e conut de(efe i ol nide eutn ﬂ/lmgh 1 counk e 360, i

O To delete one cccurpn o (}6“ Pﬁhes we detemend the cuni Deld ar s foing |
mode, but no des (ae} delete]. [“”Z] Mf7)

Tries
Notes by: Sean Szumlanski
COP 3502, Fall 2015

Monday, November 2, 2015

Attachment: trie-notes.pdf

Today, we introduced the trie data structure. Some notes and diagrams are attached in trie-notes.pdf.

We started class with a discussion of dictionaries and spell checking using BSTs or binary search through a sorted array:

We discussed how a BST could be used as a dictionary (by supporting insertion and look-up functions). Potential weakness: If
we insert a dictionary of words into a BST in alphabetical order, it devolves into a linked list, ruining our runtimes for insertion and
look-up.

We could insert words into an array and then sort it with an O(n log n) sorting algorithm. After that, we can determine whether a
word is in the array using binary search. The big limitation here is that if we want to add words while the program is running, we
need to expand our array, which could be a costly operation (in terms of runtime). (And this isn't a far-fetched scenario; people
add words to their web browser and cell phone spell checkers all the time.)

Note that if we want to know how many times a word occurs in a corpus, we could modify our BST node struct to have a word
count field (instead of inserting words into a BST multiple times, which would take up extra space and also require us to write a
slower function to determine how many times a word occurs in the BST).

Recall that a corpus is a body of text.

All the approaches mentioned above suffer tremendously if we have a dictionary full of fake words that share a long prefix. For
example, suppose | have a dictionary with 200 million words that all begin with "spaghettiHasNothingToDoWithAnything", such
as, "spaghettiHasNothingToDoWithAnythingA", "spaghettiHasNothingToDoWithAnythingB",
"spaghettiHasNothingToDoWithAnythingAndThisCouldGoOnForever", and so on.) Suddenly, looking up those strings is a bit
more expensive, because we have to go through 35 characters every single time we perform a comparison. That wasn't the case
when we were dealing with arrays of integers, and we often sweep that issue under the rug when talking about runtime, because
we assume string length is bounded by some sort of reasonable constant, but it's a good thing to keep in mind, because it does
have a real impact on runtime, especially if you're processing a ton of data.

On the topic of tries, we saw:

Strings are not stored as data inside trie nodes. Instead, the node that a string represents is based on the path you take to reach
that node.

To get from one node to another via an edge that represents a specific letter (for example, the letter 'p'), we can access:
n->children['p' - 'a']

Insertion, look-up, and deletion are now O(k) operations (worst-case), where k is the length of the string being inserted, retrieved,
or deleted. Notice that this is entirely independent of the number of strings we have already inserted into the trie.

The best-case runtime for insertion is O(k), because we have to process all k letters in the string.

The best-case runtime for look-up and deletion is O(1). If the first letter of the string leads us to a NULL pointer in the trie, we
terminate immediately.

There are some serious space trade-offs with tries. On the one hand, words with shared prefixes use the same nodes to
represent those prefixes, so we're saving some space. (For example, the "app" in "app," "application," "applications," "apple,"
"apples,” and "applesauce," is represented by the same three nodes in the trie.) However, each node in the trie has 26 children,
so the number of pointers can be exponentially explosive.

The word "trie" comes from "retrieval," and should technically be pronounced like "tree." However, | will pronounce it like "try" in
an effort to be clear about which data structure I'm talking about.

We also discussed the process for deleting a word from a trie. (This assumes that our nodes hold a count -- the number of times a
string has been inserted into the trie. It also assumes that each delete operation wants to remove only a single occurrence of that string

mailto:seansz@cs.ucf.edu

from the trie -- not all of them.)
First, we traverse down to the terminal node for that word. At that node, we do the following:

if this node's count field is 0
do nothing (it's not in the trie, so we can't delete it!)
otherwise, if this node's count field is > 1
just decrement the count variable by one
otherwise, if this node has children
just set the count field to 0
otherwise
prune this node
walk back up the chain toward the root node, deleting each node you encounter along the way, until either:
a. you encounter a node with count > 0
- or --
b. you encounter a node that has at least one non-null child

Let's trace through an example. Suppose | start with this trie:

Deleting "ad" yields the following trie. We removed the 'd' node since it was a leaf with no children and its count field was decremented
from 1 to O:

Deleting "app" yields the following trie. We set the second 'p' node's a count field to 0, but we could not delete that node because it has
children:

Deleting "apples" yields the following trie. We removed the 's' node since it was a leaf with no children and its count field was
decremented from 1 to O:

Finally, deleting "apple" yields the following trie. We removed the 'e' node since it was a leaf with no children and its count field was
decremented from 1 to 0. We then followed the chain up toward the root, deleting nodes until we encountered one that either had non-
null children or a count field that was greater than 0O:

o
[

| also mentioned in class that we could embed more information in each trie node. For example, we could have each trie node point to a
whole, separate trie that contains words that frequently co-occur with the word that got us to that node.

For example, what if | want to maintain a separate trie that tells me all the words | have typed into my cell phone recently in all
sentences that contain the word "cake?" Or, what if | want to know how many times every word has occurred in a sentence with every
other word I've typed, and the only sentences I've typed recently are "I like cake" and "I enjoy cake"? Then | might build the following
trie, with the four subtries listed below.

(Continued on next page...)

Derived from the following corpus:

| like cake.
| enjoy cake.

o

0
k/

O

Eii) L (3

"like” subtvie "cake” Subtrie "I* subdrie

'Qnﬂn swbirie

* Assume all the empty nodes have count values of 0.

What's next?

On Wednesday, we'll delve into some code for tries, and then we'll quickly hop along to another data structure: minheaps.

Practice Problems

1. Write a function to insert a word into a trie. (But don't share your solution with anyone, because you have to write a similar function
for your next programming assignment.) Make sure your function is case insensitive, so insert("SoMeSTriNG") should insert
"somestring". The node struct is:

typedef struct trieNode

{
// for this exercise, you can treat this as a simple 0 or 1 flag,
// or you can get fancy with it and print the count associated
// with each word in the trie
int count;

// 26 child nodes, one for each letter of the alphabet
struct trieNode *children[26];
} trieNode;

2. Refer to the following trie for the exercises below:

w"ﬂ

e e
[s]
o o
w
c r
D) 5
3
1

a. What strings are represented in the trie?
b. Show what the trie looks like after inserting the strings "winnowing" and "virtue."

c. Show what the trie looks like after deleting each of the following strings: "window", "winners", and "win"

