
Quick Select

The selection problem is as follows:

Given a list of n numbers, find the kth smallest number in the

list.

One obvious solution to this problem is as follows:

1) Sort the numbers.

2) Return the value stored in index k-1. (Since arrays are 0-

based.)

Based on what we’ve learned, we know that this algorithm

would run in O(nlgn) time.

We might ask if we can do better than this. We know for a fact

that in order to gauge what the kth smallest element was, we

HAVE to look at each element at least once. Thus, it stands to

reason that the best possible run-time we could ever hope to

achieve is O(n).

Quick Select, which is based on the Partition function that

Quick Sort uses, achieves an average run-time of O(n). (It’s

worst case run-time is O(n2) just like Quick Sort, but is very

unlikely.)

Basic Idea behind Quick Select

Imagine running Partition on an array of n elements. When

the partition is done, it returns an integer, (call this m), which

is the index where the partition element has been stored.

Note that the rank of this partition element is m+1.

Thus, if k, the rank of the element we are looking for just

happens to equal m+1, we are done!

For example, consider partitioning the following array:

index 0 1 2 3 4 5 6

value 5 2 9 6 1 3 8

The partition produces the following:

index 0 1 2 3 4 5 6

value 1 2 3 5 6 9 8

and returns the value 3, which is the index of the partition

element (which was 5).

Consider the situation where we were looking for the 4th

smallest element in this array. We know that 5, which is in its

correct sorted location IS that element, so we can just return it.

But, this only happens sometimes.

There are two other possibilities:

1) The rank of the element we are looking for is LESS THAN

m+1.

2) The rank of the element we are looking for is GREATER

THAN m+1.

In the first case, we must only search for our element to the left

of the array.

In the second case, we must only search for our element to the

right of the array.

Thus, in both cases, we only make ONE recursive call.

Let’s go back to our original example, but this time consider

searching for the 2nd smallest item in the array. Once again,

let’s look at the results of our partition:

index 0 1 2 3 4 5 6

value 1 2 3 5 6 9 8

We know that we only need to search in the array from index 0

to index 2, and that within this range we are STILL looking for

the second smallest value. This is all the information we need

for our recursive call.

Now, consider searching for the 6th smallest value in the array.

If we take a look at our original partition:

index 0 1 2 3 4 5 6

value 1 2 3 5 6 9 8

we see that we now want the 2nd smallest value in the array on

the right, starting at index 4 and ending at index 6. The reason

for this is that there are four values from the old array

excluded from our search (these are 1, 2, 3, and 5), so now,

instead of looking for the 6th smallest item, we are NOW

looking for the 6 – 4 = 2nd smallest item in the array [6 9 8].

This is all the information we need for the other recursive call!

Let's take a look at some code that implements this algorithm:

int qsel(int* numbers, int low, int high,

int rank) {

 if (low == high)

 return numbers[low];

 int sp = partition(numbers,low,high);

 if (rank == sp-low+1)

 return numbers[sp];

 else if (rank < sp-low+1)

 return qsel(numbers, low, sp-1, rank);

 else

 return qsel(numbers, sp+1, high,

 rank-(sp-low+1));

}

Quick Select Analysis

In the best case, the partition works the first time around and

we find the element in O(n) time.

In the worst case, Quick Select runs identical to the worst case

of Quick Sort. The partition element is always the greatest

value (or least value) of the ones remaining and the rank of the

item for which we are looking doesn’t get revealed till the very

end. In this situation, we have to run partition n-1 times, the

first time comparing n-1 values, then n-2, followed by n-3, etc.

This points to the sum 1+2+3+...+(n-1) which is (n-1)n/2. Thus,

the worst case running time is O(n2).

The analysis of the average case is beyond the scope of this

class. Needless to say, the recurrence relation for an arbitrary

run of Quick Select looks like:

T(n) = T(k) + O(n), where k represents the size of the new

array in which the search has been restricted. The idea for the

average case analysis is to go through all possibilities of quick

select running, weighting each on the probability of where the

partition element will end up. (This process turns out to be

even more difficult than the Quick Sort analysis.)

For those who are really curious, I've attached my Quick

Select analysis from CS2 on the following pages. Note: it's

more difficult than the Quick Sort analysis…

