
Quick Select 

 
The selection problem is as follows: 

 

Given a list of n numbers, find the kth smallest number in the 

list. 

 

One obvious solution to this problem is as follows: 

 

1) Sort the numbers. 

2) Return the value stored in index k-1. (Since arrays are 0-

based.) 

 

Based on what we’ve learned, we know that this algorithm 

would run in O(nlgn) time. 

 

We might ask if we can do better than this. We know for a fact 

that in order to gauge what the kth smallest element was, we 

HAVE to look at each element at least once. Thus, it stands to 

reason that the best possible run-time we could ever hope to 

achieve is O(n). 

 

Quick Select, which is based on the Partition function that 

Quick Sort uses, achieves an average run-time of O(n). (It’s 

worst case run-time is O(n2) just like Quick Sort, but is very 

unlikely.) 

 



Basic Idea behind Quick Select 

 
Imagine running Partition on an array of n elements. When 

the partition is done, it returns an integer, (call this m), which 

is the index where the partition element has been stored. 

 

Note that the rank of this partition element is m+1. 

 

Thus, if k, the rank of the element we are looking for just 

happens to equal m+1, we are done! 

 

For example, consider partitioning the following array: 

 

index 0 1 2 3 4 5 6 

value 5 2 9 6 1 3 8 

 

The partition produces the following: 

 

index 0 1 2 3 4 5 6 

value 1 2 3 5 6 9 8 

 

and returns the value 3, which is the index of the partition 

element (which was 5). 

 

Consider the situation where we were looking for the 4th 

smallest element in this array. We know that 5, which is in its 

correct sorted location IS that element, so we can just return it. 

 

But, this only happens sometimes. 

 



There are two other possibilities: 

 

1) The rank of the element we are looking for is LESS THAN 

m+1. 

 

2) The rank of the element we are looking for is GREATER 

THAN m+1. 

 

In the first case, we must only search for our element to the left 

of the array. 

 

In the second case, we must only search for our element to the 

right of the array. 

 

Thus, in both cases, we only make ONE recursive call. 

 

Let’s go back to our original example, but this time consider 

searching for the 2nd smallest item in the array. Once again, 

let’s look at the results of our partition: 

 

 

index 0 1 2 3 4 5 6 

value 1 2 3 5 6 9 8 

 

We know that we only need to search in the array from index 0 

to index 2, and that within this range we are STILL looking for 

the second smallest value. This is all the information we need 

for our recursive call. 

 



Now, consider searching for the 6th smallest value in the array. 

If we take a look at our original partition: 

 

 

index 0 1 2 3 4 5 6 

value 1 2 3 5 6 9 8 

 

we see that we now want the 2nd smallest value in the array on 

the right, starting at index 4 and ending at index 6. The reason 

for this is that there are four values from the old array 

excluded from our search (these are 1, 2, 3, and 5), so now, 

instead of looking for the 6th smallest item, we are NOW 

looking for the 6 – 4 = 2nd smallest item in the array [6 9 8]. 

 

This is all the information we need for the other recursive call! 



  

Let's take a look at some code that implements this algorithm: 

 

 
int qsel(int* numbers, int low, int high, 

int rank) { 

 

  if (low == high)  

    return numbers[low]; 

 

  int sp = partition(numbers,low,high); 

 

  if (rank == sp-low+1) 

    return numbers[sp]; 

          

  else if (rank < sp-low+1) 

    return qsel(numbers, low, sp-1, rank); 

      

  else 

    return qsel(numbers, sp+1, high,  

                         rank-(sp-low+1)); 

         

} 

 

 



Quick Select Analysis 

 
In the best case, the partition works the first time around and 

we find the element in O(n) time. 

 

In the worst case, Quick Select runs identical to the worst case 

of Quick Sort. The partition element is always the greatest 

value (or least value) of the ones remaining and the rank of the 

item for which we are looking doesn’t get revealed till the very 

end. In this situation, we have to run partition n-1 times, the 

first time comparing n-1 values, then n-2, followed by n-3, etc. 

 

This points to the sum 1+2+3+...+(n-1) which is (n-1)n/2. Thus, 

the worst case running time is O(n2). 

 

The analysis of the average case is beyond the scope of this 

class. Needless to say, the recurrence relation for an arbitrary 

run of Quick Select looks like: 

 

T(n) = T(k) + O(n), where k represents the size of the new 

array in which the search has been restricted. The idea for the 

average case analysis is to go through all possibilities of quick 

select running, weighting each on the probability of where the 

partition element will end up. (This process turns out to be 

even more difficult than the Quick Sort analysis.) 

 

For those who are really curious, I've attached my Quick 

Select analysis from CS2 on the following pages. Note: it's 

more difficult than the Quick Sort analysis… 
 

 
 








