Linked Lists

Linked List: The simplest form of a linked structure. It
consists of a chain of data locations called nodes. Each node
holds a piece of information AND a link to the next node.

Each node is a struct that contains two fields: the data (which
will just be a single integer for our examples) and a pointer to a
node.

Here is a picture of what a simple linked list that stores 4
values looks like:

 BER ARy BECGE

Here is a struct we would use to define a record that stores one
of these nodes:

struct 11 {
int data;
struct 11 *next;

}

Now, to actually use this record we would have to define a
variable of type List Node as follows:

struct 11 *my list;




How to access nodes of a linked list

Let’s assume we already have my list initialized to look like

this: (Don’t worry how this occurred, we’ll go through that in a
bit.)

Now, one of the most common errors dealing with pointers is
“moving” the head of the list. Consider if we made my list
point to the second node we have listed. In this case, we would
have NO way to access that data value in the first record.
Rather than do this, what we need is a temporary List Node
pointer to help us move through the list. We can define one as
follows:

struct 11 *help ptr;

Now our picture looks like this:

mg__lrg% *—b@jﬁf@ | f—)l*—t [

)’)@ %,54'/ — ?

As we can see, help ptr is uninitialized. Just as it isn’t a good
practice to leave variables uninitialized, it isn’t good to leave
pointers the same way. The default value that a pointer is
initialized to is ‘E}I}:‘L lz}nd can be done like the following:

help ptr = NULL;




Now, if we want to use help ptr to move around the list pointed
to by my _list, we could start off with the following line:

help ptr = my list;

This makes our picture look like:

my fe’r—a%}@

}\el,ayﬁr

Now, to access say the data field of the first record in the list,
we could refer to it in either of these ways:

(*my list) .data OR (*help ptr) .data
my list->data OR help ptr->data

A few things to notice here. First both of these expressions
refer to the same exact variable since my list and help ptr are
pointing to the same exact Il

Next, in order to access that first Il through either of the
pointers, we MUST dereference the pointer using the * symbol.

Finally, we use the dot operator to refer to a field within the
record, as we learned before. Notice that the expression

my _list.data

is syntactically incorrect because my list IS NOT a of type L,
and we are only allowed to access the data field of a 1l. Also
notice that the arrow -> provides an valid alternative syntax.




Consider now using the pointer help ptr to traverse the list
pointed to by my_list. We could do something like

help ptr = help ptr->next
Note that the syntax here is correct because both sides of the

assignment statement are pointers to Il's. Here is how this
statement would change our picture:

my J.‘s*%i??—a} 6] =/ u] x|

)qefao_,doi-r

Then, we could refer to the data field in the second List Node
as:

help ptr->data

We can repeatedly use help _ptr in this fashion to iterate
through this list. We could also modify the values in the list
with a statement like:

help ptr->data = 10;
A\

This sort of manipulation will be handy for “editing” lists.

M wé cgi() %:‘5 "[’lu.e new f:c/vn:’ XS

R T = L B e 3

L\e'F.f)L/




Applying this to a segment of code that prints out
a linked list.

Assume that my_list is already pointing to a valid list of values.

struct 11 *help ptr;
help ptr = my list;

while (help ptr != NULL) ({
printf("%d ", help ptr->data);
help ptr = help ptr->next;

}

If you carefully look at the linked list code example given to
you, you'll see that no temporary pointer is used. Why is this
okay?




How to add a node to a list

This is how to create a List_Node to be added to a list:

struct 11 *temp;

tenmp = malloc(sizeof (struct 11));
temp->data 7

temp->next NULL

The picture of this looks like this:

' /o
Jemp }A"’ = e

A2 Y

Newt R |ines Jo

' Aq?le, /77
Jere %m

There are a couple of things going on here. Note that temp here
is a pointer to a Il, not a 1l itself, and that first statement
implicitly creates a 1l that the pointer temp is pointing to. Once
we do that, all we have to do is dereference our pointer to
initialize the newly created 1l. By having this capability of
created 1I's like this on the fly, and then adding them to a list,
we have the ability to store information dynamically.

Now, to finally add this node to an end of a list, assume that the
List Node pointer help ptr is pointing to the last node in the
list. Then all we have to do to connect the entire list is:

help ptr->next = temp;

Now, let's go over the other functions in the handout.




insert front

1) Create a node storing the element to insert.
2) Attach this node to the rest of the list.

3) Return a pointer to this newly created node.

insert_back

1) Create a node storing the element to insert.

2) Use a temporary pointer to iterate to the last node of the list.
3) Attach this last node to the newly created node.

4) Return a pointer to the front of the original list.

In both of these functions: we must check to see if the list we
are inserting into is NULL and return accordingly.

insert_inorder

1) Create a node storing the element to insert.

2) Use a temporary pointer to iterate through the list, making
sure to stop at the node RIGHT BEFORE(call this x), the
insertion needs to be made.

3) Save a pointer to the node RIGHT AFTER(call this y) where
the inserted node needs to be placed.

4) Attach x to the newly created node.

5) Attach the newly created node to y.

delete

1) Use a temporary pointer to iterate through the list, stopping
at the node RIGHT BEFORE the one storing the value to
delete. '

2) Store pointers to the node to delete.

3) Patch the node RIGHT BEFORE the deleted node to the one
RIGHT AFTER it.

4) Free the memory for the deleted node.




