
Important COP 3502 Final Exam Information

Date: 4/29/2022

Time: 10:00 AM (2.5 hours earlier than class time!!!)

Room: CB1-104

Exam Aids: Three sheets of regular 8.5”x11” paper, front and

back, and the Foundation Exam Formula Sheet (provided)

Test Format:

Short Answer/Coding/Tracing/Problems

Areas of Focus: Binary Search, Backtracking, Base

Conversion, Bitwise Operators, Recurrence Relations,

Dynamic Memory Allocation, Recursion

Exam Archive:

www.cs.ucf.edu/~dmarino/ucf/transparency/cop3502/exam/

Archive shows types of questions I've asked in the past.

http://www.cs.ucf.edu/~dmarino/ucf/transparency/cop3502/exam/

Outline of Topics for the Exam

I. Basics of C – if, loops, functions, array, strings

II. Problem Solving on Arrays

 a. Sorted List Matching

 b. Binary Search

III. Structs, Pointers and Dynamic Arrays

 a. how to allocate space dynamically

 (array, 2d array, array of struct, array of ptr to struct,

 linked list node, bin tree node, etc.)

 b. how to free space

 c. how to "resize" an existing array

 d. how to declare structs

 e. how to use pointers to structs

 f. how to use arrays of structs

 g. how to use arrays of pointers to structs

 g. how to pass structs or pointers to structs into a function

IV. Recursion

 a. Fibonacci

 b. Factorial

 c. Towers of Hanoi

 d. Binomial Coefficients

 e. Binary Search

 f. Fast Modular Exponentiation

 g. Floodfill

 h Brute Force (odometer, combinations)

 i. Generating Permutations

V. Linked Lists

 a. Creating Nodes

 b. Checking for NULL

 c. Iterating through a list

 d. Using recursion to visit all the nodes in a list.

 e. Insertion, Searching

 f. Deletion

 g. difference between ptr == NULL and ptr->next == NULL

 h. Circularly linked

 i. Doubly linked

VI. Stacks

 a. Array Implementation

 b. Dynamically Sized Array Implementation

 c. Linked List Implementation

 d. Efficiency of push, pop

 e. Determining the Value of Postfix Expressions

 f. Converting Infix to Postfix

VII. Queues

a. Array Implementation

 b. Dynamically Sized Array Implementation

 c. Linked List Implementation

 d. Efficiency of Enqueue and Dequeue

VIII. Algorithm Analysis

 a. Average case vs. Worst case

 b. Determining a Big-Oh bound via code segment

 c. Use of sums

 d. Big-Oh timing problems

 e. Logs and exponents

 f. Recurrence Relations

 g. New problem analysis

IX. Sorting

 a. Bubble Sort

 b. Insertion Sort

 c. Selection Sort

 d. Merge Sort

 e. Quick Sort

X. Binary Search Trees

 a. Creating Nodes

 b. Tree Traversals (preorder, inorder, postorder)

 c. Insertion

 d. Searching

 e. Deletion

 f. Code Tracing

 g. Writing Code (recursive)

XI. AVL Trees

 a. AVL Tree Property

 b. Identifying nodes A, B and C for both insert and delete

 c. Restructuring for both insert and delete

 d. Delete may have multiple restructures

XII. Tries

 a. Basic struct

 b. Extra items to store in struct

 c. Checking for NULL

 d. Use of recursion on all 26 children

 e. Coding problems

XIII. Binary Heaps

 a. percolateUp

 b. percolateDown

 c. Insert

 d. deleteMin

 e. makeHeap

 f. Heap Sort

XIV. Hash Tables

 a. Properties of a good hash function

 b. linear probing replacement technique

 c. quadratic probing replacement technique

 d. linear chaining hashing

XV. Base Conversion and Bitwise Operators

 a. base conversion (2, 10, 16, other)

 b. left shift, right shift, and, or, xor, complement

 c. How to use a number to indicate a subset.

 d. How to iterate through all possible subsets w/bitmask.

 e. Use of operators for set tasks (intersection, union)

 f. use of xor(^) in grading a T/F quiz.

XVI. Binary Search

 a. Problem easy to do forwards, hard to do backwards

 b. Search function is increasing or decreasing

 c. Simplify original version of the problem

 d. Crystal Etching (function inversion)

 e. Airport Shuttle

XVII. Backtracking

 a. Use in Eight Queens Problem

 b. Digit Divisibility

 c. Geppetto Problem (and use of bitwise ops)

 c. Trying all possibilities and stopping if a path is doomed to

 fail.

