
Verifying an Algorithmic Analysis through running 

actual code 
 

 

Let's assume that T(N) is the experimental running time of a 

piece of code and we'd like to see if T(N)  O(F(N)). 
 

One way to do this is by computing T(N)/F(N) for a range of 

different values for N (commonly spaced out by a factors of 

two).  Depending upon these values of T(N)/F(N) we can 

determine how accurate our estimation for F(N) is. 

 

If these values stay relatively constant, then our guess for the 

running time is good. We have a close upper bound. 

 

If these values diverge to infinity, then our run-time is a 

function BIGGER than F(N). 

 

Otherwise, if these values converge to 0, then our run-time is 

more accurately described by a function smaller than F(N). 
 

Examples 
 

Example 1 

 

Consider the following table of data obtained from 

running an instance of an algorithm assumed to be cubic.  

Decide if the Big-Oh estimate, O(N3) is accurate.   
 

Run N T(N) 

1 100 0.017058 ms 

2 1000 17.058 ms 

3 5000 2132.2464 ms 

4 10000 17057.971 ms 

5 50000 2132246.375 ms 



 

T(N)/F(N) = 0.017058/(100*100*100) = 1.0758  10-8 

T(N)/F(N) = 17.058/(1000*1000*1000) = 1.0758  10-8 

T(N)/F(N) = 2132.2464/(5000*5000*5000) = 1.0757  10-8 

T(N)/F(N) = 17057.971/(10000*10000*10000) = 1.0757  

10-8 

T(N)/F(N) = 2132246.375/(50000*50000*50000) = 1.0757  

10-8 
 

The calculated values converge to a positive constant 

(1.0757  10-8) – so the estimate of O(n3) is a good 

estimate.  
 

   Example 2 

 

Consider the following table of data obtained from 

running an instance of an algorithm assumed to be 

quadratic.  Decide if the Big-Oh estimate, O(N2) is 

accurate.  

 

Run N T(N) 

1 100 0.00012 ms 

2 1000 0.03389 ms 

3 10000 10.6478 ms 

4 100000 2970.0177 ms 

5 1000000 938521.971 ms 
 

T(N)/F(N) = 0.00012/(100 * 100) = 1.6  10-8 

T(N)/F(N) = 0.03389/(1000 * 1000) = 3.389  10-8 

T(N)/F(N) = 10.6478/(10000 * 10000) = 1.064  10-7 

T(N)/F(N) = 2970.0177/(100000 * 100000) = 2.970  10-7 

T(N)/F(N) = 938521.971/(1000000 * 1000000) =9.385 10-7 
 

The values diverge, so O(n2) is an underestimate. 



Limitations of Big-Oh Notation 

1) not useful for small sizes of input sets 
 

2) omission of the constants can be misleading – example 

2NlogN and 1000N, even though its growth rate is larger the 

first function is probably better.  Constants also reflect things 

like memory access and disk access. 

 

3) assumes an infinite amount of memory – not trivial when 

using large data sets 

 

4) accurate analysis relies on clever observations to optimize 

the algorithm. 

 



Growth Rates of Various Functions 

 

The table below illustrates how various functions grow with 

the size of the input n. 

 

Assume that the functions shown in this table are to be 

executed on a machine which will execute a million instructions 

per second.  A linear function which consists of one million 

instructions will require one second to execute.  This same 

linear function will require only 410-5 seconds (40 

microseconds) if the number of instructions (a function of 

input size) is 40.   Now consider an exponential function.   
 

log 

n 
n 

n n log n n2 n3 2n 

0 1 1 0 1 1 2 

1 1.4 2 2 4 8 4 

2 2 4 8 16 64 16 

3 2.8 8 24 64 512 256 

4 4 16 64 256 4096 65,536 

5 5.7 32 160 1024 32,768 4.294109 

5.

3 

6.3 
40 212 1600 64000 1.0991012 

6 8 64 384 4096 262,144 1.8441019 

~10 31.6 1000 9966 106 109 NaN =) 

 



The Growth Rate of Functions (in terms of steps in the 

algorithm) 
 

 

When the input size is 32 approximately 4.3109 steps will be 

required (since 232 = 4.29109).  Given our system performance 

this algorithm will require a running time of approximately 

71.58 minutes.  Now consider the effect of increasing the input 

size to 40, which will require approximately 1.1x1012 steps 

(since 240 = 1.09x1012).  Given our conditions this function will 

require about 18325 minutes (12.7 days) to compute.  If n is 

increased to 50 the time required will increase to about 35.7 

years.  If n increases to 60 the time increases to 36558 years 

and if n increases to 100 a total of 4x1016 years will be needed! 
 

Suppose that an algorithm takes T(N) time to run for a 

problem of size N – the question becomes – how long will it 

take to solve a larger problem?   As an example, assume that 

the algorithm is an O(N3 ) algorithm.  This implies: 

 

T(N) = cN3.   

 

If we increase the size of the problem by a factor of 10 we have: 

T(10N) = c(10N)3.  This gives us: 

T(10N) = 1000cN3 = 1000T(N) (since T(N) = cN3) 
 

Therefore, the running time of a cubic algorithm will increase 

by a factor of 1000 if the size of the problem is increased by a 

factor of 10.  Similarly, increasing the problem size by another 

factor of 10 (increasing N to 100) will result in another 1000 

fold increase in the running time of the algorithm (from 1000 

to 1106). 

 

T(100N) = c(100N)3 = 1106cN3 = 1106T(N) 

 



A similar argument will hold for quadratic and linear 

algorithms, but a slightly different approach is required for 

logarithmic algorithms.  These are shown below. 
 

For a quadratic algorithm, we have T(N) = cN2.  This implies: 

T(10N) = c(10N)2.  Expanding produces the form: T(10N) = 

100cN2 = 100T(N).  Therefore, when the input size increases by 

a factor of 10 the running time of the quadratic algorithm will 

increase by a factor of 100. 

 

For a linear algorithm, we have T(N) = cN.  This implies: 

T(10N) = c(10N).  Expanding produces the form: T(10N) = 

10cN = 10T(N).  Therefore, when the input size increases by a 

factor of 10 the running time of the linear algorithm will 

increase by the same factor of 10. 

In general, an f-fold increase in input size will yield an f 3-fold 

increase in the running time of a cubic algorithm, an f 2-fold 

increase in the running time of a quadratic algorithm, and an 

f-fold increase in the running time of a linear algorithm. 

 

The analysis for the linear, quadratic, cubic (and in general 

polynomial) algorithms does not work when in the presence of 

logarithmic terms.   

 



When an O(N logN) algorithm experiences a 10-fold increase 

in input size, the running time increases by a factor which is 

only slightly larger than 10.  For example, increasing the input 

by a factor of 10 for an O(N logN) algorithm produces: T(10N) 

= c(10N) log(10N).  Expanding this yields: T(10N) = 10cN 

log(10N) = 10cN log10 + 10cN logN = 10T(N) + cN  (where c = 

10clog10).  As N gets very large, the ratio T(10N)/T(N) gets 

closer to 10 (since cN/T(N)  (10 log10)/logN gets smaller and 

smaller as N increases. 

 

The above analysis implies, for a logarithmic algorithm, if the 

algorithm is competitive with a linear algorithm for a 

sufficiently large value of N, it will remain so for slightly larger 

N. 
 


