
COP 3502 Section 2 Final Exam - Part A (DMA, LL, Stacks/Queues)

Date: 7/29/2020

Start Time: 4:00 pm EST

End Time: 4:30 pm EST

Directions: Please type up answers in either a Word Document (.doc, docx) or a Text

Document (.txt) or scan your written work to a .pdf file and upload your document AND

SUBMIT IT to the appropriate assignment in Webcourses COP 3502 Section 2. Don't recopy

the questions due to the time constraints, but clearly label which question number your work

corresponds to. On the document you submit, put your first and last name in the top left

hand corner. On the following line, write "My Exam 1 Part A Answers", centered. Following

that, place your answers, numbered, in order (1, 2, 3).

1) (10 pts) A class has n students, and the ith student has taken si tests. This information is stored

in a file where the first line has the value of n and the following n lines have information about

each student. On the ith of these lines, the first value is si. This is followed by si integers, all in

between 0 and 100, inclusive, representing the test scores. Here is a sample file:

4

10 100 80 90 100 90 90 95 80 100 95

3 87 93 90

5 100 90 90 100 90

8 90 90 90 90 80 80 85 85

Write a segment of code that reads in this information from standard input (assuming file

redirection on the command prompt as shown in class) into an array of arrays that is dynamically

allocated to have precisely the correct number of slots to store the data. Name your array

studentscores. All necessary variables have been declared for you below. Please use only these in

your solution. Note: you are ONLY allocating the memory and reading in the information.

No need to do anything else. Also, the way this is written, you wouldn't have stored the length

of each separate array, but don't worry about that for the purposes of this question.

int** studentscores;

int i, j, numStudents, numScores;

2) (10 pts) Write a function that takes in a pointer to a linked list of nodes storing integers and a

variable named value, and returns the number of nodes in the list storing that value. For example,

if a list pointed to by listPtr stores 2, 6, 2, 3, 4, 2, 6, and 6 and value = 6, your function should

return 3, since 6 appears in the list 3 times. Please use the struct and function prototype provided

below:

typedef struct node {

 int data;

 struct node* next;

} node;

int countInList(node* listPtr, int value) {

 // fill in code

}

3) (5 pts) What is the value of the following post-fix expression? (Note: You will be graded solely

on your final response.)

3 9 + 4 * 12 2 / / 2 8 5 - * +

COP 3502 Section 2 Final Exam - Part B (Bin Tree, Hash Table/Heaps, AVL Trees/Tries)

Date: 7/29/2020

Start Time: 4:30 pm EST

End Time: 5:00 pm EST

Directions: Please type up answers in either a Word Document (.doc, docx) or a Text

Document (.txt) or scan your written work to a .pdf file and upload your document AND

SUBMIT IT to the appropriate assignment in Webcourses COP 3502 Section 2. Don't recopy

the questions due to the time constraints, but clearly label which question number your work

corresponds to. On the document you submit, put your first and last name in the top left

hand corner. On the following line, write "My Exam 1 Part B Answers", centered. Following

that, place your answers, numbered, in order (1, 2, 3).

1) (10 pts) Write a recursive function that counts and returns the number of nodes in a binary tree

with the root root, that store an even value. Please use the struct shown and function prototype

shown below. (For example, if the tree rooted at root stored 2, 3, 4, 8, 13, 18 and 20, the function

should return 5, since there are five even values [2,4,8,18,20] stored in the tree.

typedef struct node {

 int data;

 struct node* left;

 struct node* right;

} node;

int numEvenNodes(node* root) {

 // Fill in code

}

2) (5 pts) Consider inserting the following values into a min heap, in this order: 12, 3, 19, 2, 1.

Show the final locations for each value in the array storing the heap. (Recall that we store heaps in

arrays using 1-based indexing and typically leave the 0 index blank.) Note: Only the answer will

be graded for this question.

index 1 2 3 4 5

value

3) (10 pts) Write a function that takes in a root node of a trie and returns the length of the longest

word stored in that trie. Use the struct given and function prototype given below.

typedef struct trienode {

 int isWord;

 struct trienode* next[26];

} trienode;

int maxWordLength(trienode* root) {

 // Fill in code

}

COP 3502 Section 2 Final Exam - Part C (Analysis, Timing, Sums/Recurrences)

Date: 7/29/2020

Start Time: 5:00 pm EST

End Time: 5:30 pm EST

Directions: Please type up answers in either a Word Document (.doc, docx) or a Text

Document (.txt) or scan your written work to a .pdf file and upload your document AND

SUBMIT IT to the appropriate assignment in Webcourses COP 3502 Section 2. Don't recopy

the questions due to the time constraints, but clearly label which question number your work

corresponds to. On the document you submit, put your first and last name in the top left

hand corner. On the following line, write "My Exam 1 Part C Answers", centered. Following

that, place your answers, numbered, in order (1, 2, 3).

1) (10 pts) What are the worst case run times of each of the following operations? Make sure to

list your answer in terms of the appropriate variables in the prompt. Note that on occasion, some

of the run times won't be dependent on some of the variables listed in the prompt.

(a) Inserting an item to the front of a linked list of n elements. _____________

(b) Sorting n integers using Quick Sort. _____________

(c) Merging a sorted list of a elements with a sorted list of b elements. _____________

(d) Inserting an item into a binary heap of n elements. _____________

(e) Deleting an item from a binary search tree of n elements. _____________

(f) Deleting an item from an AVL tree of n elements. _____________

(g) Printing out each permutation of n elements, where printing one _____________

 value takes O(1) time.

(h) Calculating ab mod c where individual multiplications and mods _____________

 take O(1) time, using fast modular exponentiation.

(i) A floodfill on a grid with r rows and c columns. _____________

(j) Dequeuing an item from a queue of n elements. _____________

2) (5 pts) An algorithm answers a query on a database of n elements in O(√𝑛) time. For a database

of size n = 106, it takes 2 seconds to perform 5,000 queries. How many seconds should it take to

answer 3,000 queries on a database of size n = 108? (Note: all credit is based on the work and not

the answer.)

3) (10 pts) Determine the following summation in terms of n. Please express your answer in the

form, an2 + bn + c, for constants a, b and c.

∑(5𝑖 + 7)

3𝑛−1

𝑖=𝑛

COP 3502 Section 2 Final Exam - Part D (Recursion, Sorting, Bitwise Ops/Backtracking)

Date: 7/29/2020

Start Time: 5:30 pm EST

End Time: 6:00 pm EST

Directions: Please type up answers in either a Word Document (.doc, docx) or a Text

Document (.txt) or scan your written work to a .pdf file and upload your document AND

SUBMIT IT to the appropriate assignment in Webcourses COP 3502 Section 2. Don't recopy

the questions due to the time constraints, but clearly label which question number your work

corresponds to. On the document you submit, put your first and last name in the top left

hand corner. On the following line, write "My Exam 1 Part D Answers", centered. Following

that, place your answers, numbered, in order (1, 2, 3).

1) (5 pts) Consider the problem of finding the mode (most frequently occurring value) in an array.

John attempts to solve the problem recursively. His strategy is to recursively call his mode function

on the left half of the array and the right half of the array, and then use these answers to calculate

the mode of the whole array. Assuming that his function only returns the mode and nothing else,

why is his strategy doomed to fail?

2) Sorting

(a) (5 pts) In a Merge Sort of 8 elements, the Merge function gets called 7 times. Consider a Merge

Sort being executed on the array shown below. What does the array look like right AFTER the

sixth call to the Merge function completes?

index 0 1 2 3 4 5 6 7

value 40 27 12 18 11 99 31 16

Index 0 1 2 3 4 5 6 7

Value

(b) (5 pts) Consider sorting the array below using a Bubble Sort. Show the contents of the array

after each iteration of the algorithm completes. (Note: after the first iteration, the maximum array

value should be in its correct spot.)

Index 0 1 2 3 4 5

Original 33 18 22 9 15 14

After 1st

After 2nd

After 3rd

After 4th

After 5th

3) (10 pts) For the purposes of this question, a permutation of size n is any ordering of the integers

0, 1, 2, …, n-1. We define a spaced-out permutation of size n to be a permutation such that two

consecutive terms in the permutation differ by at least 2. For example, [0, 2, 4, 1, 3] is a spaced

out permutation of size 5, and [5, 2, 4, 0, 3, 1] is a spaced out permutation of size 6, but [3, 0, 2,

1] is not a spaced out permutation since the 2 and 1 are adjacent and differ by only 1. Fill in the

blanks below so that all spaced out permutations of size N are printed out. (Note: You may use the

abs function from the math library. The function takes in a single integer and returns its absolute

value.)

#include <stdio.h>

#include <math.h>

#define N 6

int main(void) {

 int perm[N], used[N];

 for (int i=0; i<N; i++) used[i] = 0;

 printSpaced(perm, 0, used);

 return 0;

}

void printSpaced(int perm[], int k, int used[]) {

 if (k == N) {

 for (int i=0; i<N; i++) printf("%d ", perm[i]);

 printf("\n");

 return;

 }

 for (int i=0; i<N; i++) {

 if (____ || ___________________________________)) {

 used[i] = ____;

 perm[k] = ____;

 printSpaced(______, ______, ______);

 used[i] = 0;

 }

 }

}

