1) (2 pts) An invariant can be used to: _____

a) To create a data structure

b) To prove that a loop works as desired.

c) To do a summation

d) To create a class

e) Traverse a binary tree

2) (2 pts) An actual parameter is: _____

a) a parameter you pass to a module

b) a parameter listed in a module header

c) anything that is defined as a global variable

d) the name of a module

e) the return type of a function

3) (2 pts) Object oriented programming achieves all of these except: _____

a) Superior encapsulation

b) Superior modularity

c) Superior efficiency

d) Superior adaptability

4) (2 pts) If x is defined as a Num and y as a Char, what type of error is x <- y? _____

a) Syntax error

b) Semantic error

c) Logic error

d) Ambiguity error

e) No error

5) (2 pts) The components of a record are called _____

a) variables

b) types

c) elements

d) indeces

e) fields

a) (2 pts) Each of these are atomic types except _____

b) Num

c) Char

d) String

e) Boolean

f) Ptr

6) (4 pts) Rewrite the following iterative function recursively. (Note, some of the function has already been filled in for you.

function DoesNothing returnsa Num (x isoftype in Num)

 index, sum isoftype Num

 sum <- 0

 for index <- 1 to x do

 if (index MOD 2 = 0) then

 sum <- sum + index

 else

 sum <- sum - index

 endfor

 DoesNothing returns sum

end function

function DoesNothing returnsa Num (x isoftype in Num)

 if (x = 0) then

 __

 else if (_____________) then

 __

 else

 __

 endif

endfunction

8) (2 pts) What are the values of the following expressions?

 a) ((12+11) < (3*7)) OR ((17/6) > (3 MOD 4))

 b) ((19 – 2*(6 – 4*(3 – 2/(1 – 2*(2 - 1))))) – 19) _____________

9) (4 pts) Evaluate the following post-fix expression, showing the values in the stack at each indicated point in the Postfix string(points A, B, and C).

3 6 + 10 – 1 A 5 2 * + B – 12 2 * C + 2 / = _____

A

 B

 C

10) (3 pts) What are the values that get printed out for x, y and z at the end of this algorithm?

algorithm FinalExam

 x, y, z isoftype Num

 x <- 3

 y <- –5

 z <- 15

 while (z > x) do

 if (y < 0) then

 z <- z + y

 y <- y + 2

 endif

 if (y < 0) then

 x <- x – y

 else

 x <- x + y

 endif

 endwhile

 print(x, y, z)

endalgorithm

x = _____, y = _____, z = _____

11) (4 pts) What is the binary equivalent of the decimal number 87?

12) (4 pts) What consecutive integers is log248 in between? _____ , _____

13) (4 pts) Give an order for each of these functions:

a) f(n) = 3n2 + n4 + 1 = O(_____)

b) f(n) = .02*n2 + 50nlgn = O(_____)

c) f(n) = 6nlgn – 27n + 12 = O(_____)

d) f(n) = 2n + 1000000000 = O(_____)

14) Calculate the following two summations, in terms of n:

a) (3 pts) sum from i=1 to n of the value 2i+1
b) (5 pts) sum from i=6 to n–4 of the value 4i–3
15) (4 pts) An algorithm runs in O(n2) time, and for an input size of 12, the algorithm runs in 288 ms. How long can you expect it to take to run on an input size of 18?

16) (4 pts) An algorithm runs in O(lg2n) time. For an input size of 16, the algorithm takes 48 ms. For another input size, the algorithm takes 147 ms. What is this input size? (Note: lg2n = lg2(n)* lg2(n).)

17) (2 pts) According to your textbook, what is the difference between the order of algorithms that are REASONABLE and the order of algorithms that are UNREASONABLE?

18) (3 pts) Define a type Book_Record_Node that has four components: a Num to store the number of pages of a book, and two Strings to store the title and author of the book, and finally a Ptr to a Book_Record_Node as the last component.

19) (8 pts) Now, consider a procedure that takes in two Ptrs to a Book_Record_Node – the first one being to an existing linked list of books, and the second to a single node to be inserted into the list pointed to by the first pointer. You are guaranteed that the list is in alphabetical order by title. You must insert the new node so that this order is preserved. Part of this procedure has been written for you, fill in the blanks:

procedure Insert(head isoftype in/out Ptr toa Book_Record_Node,

 temp isoftype in Ptr toa Book_Record_Node)

 if (___________ = NIL) then

 head <- _________

 elseif (head^.________ > temp^._________) then

 temp^.next <- ___________

 head <- ____________

 else

 Insert(___________ , ____________)

 endif

endprocedure

20) (4 pts) Typically, the code for MergeSort has two recursive calls inside of it. However, consider replacing these calls with two calls to a bubble sort. Call this the Bubble-Merge algorithm. What is the order of the running time of the Bubble-Merge algorithm, in n, the size of the input?

21) __________

22) (9 pts) Here is an unfinished procedure to sort an array of numbers. You may assume that the numbers in the array passed to the procedure are always distinct. Fill in the necessary blanks:

type Num_Array = array[1..10] of Num

procedure WhatSort(my_nums isoftype in/out Num_Array)

 x, y isoftype Num

 temparray isoftype Num_Array

 // Loops through each element, placing it in its correct location in the temporary

 // array at the end of the loop body.

 for x <- _____ to _____ do

 count isoftype Num

 count <- 1

 for y <- 1 to 10 do

 if (my_nums[_____] > my_nums[_____]) then

 count <- __________

 endif

 endfor

 temparray[______] <- my_nums[______]

 endfor

 for x <- 1 to 10

 my_nums[____] <- temparray[____]

 endfor

endprocedure

22) (5 pts) Consider this code for a binary tree traversal from the book:

procedure Inorder(current_ptr isoftype in Ptr toa Tree_Node)

 if (current_ptr <> NIL) then

 Inorder(current_ptr^.left_child)

 print(current_ptr^.data)

 Inorder(current_ptr^.right_child)

 endif

 endprocedure

 Edit this code so that the procedure only prints out the values stored in the tree that

 are NOT divisible by 7. (If a number is divisible by x, that means that x divides into

 that number evenly.) The procedure header is given below:

 procedure Inorder(current_ptr isoftype in Ptr toa Tree_Node)

 if (current_ptr <> NIL) then

 endif

endprocedure

23) (3 pts) What would the procedure you wrote in question 22 print out if it were run on this binary tree, (assuming you wrote it correctly :))?

 5

10 / \

11 21

 / / \

 49 55 15

 / / \ \

 18 8 7 42

____ , ____ , ____ , ____ , ____ , ____ , ____ , ____ , ____ , ____

(Note: Fill in the blanks from left to right. It is possible that some of them will

 not get filled out.)
24) (4 pts) Give two possible reasons why a constant should be used in a computer program.

1)

2)

25) (8 pts) Here are the rules for determining if a year is a leap year:

1) The year MUST BE divisible by 4 to be a leap year.

2) But, if the year is divisible by 100, but NOT 400, it is NOT a leap year.

Write a section of code that prints out all the leap years that will occur in between the year 1999 and 2999. (This should really be no longer than about 5 or 6 lines.)

26) (5 pts) What are the first names of both of your TA’s?

 ____________________, ______________________
Scratch Page – No work on this page will be graded
