
Spring 2019 COP 3502H Final Exam

Questions 1-10: Writing Functions for Word Game

For the first ten questions of this exam, you will write 10 functions to complete an implementation

of Word Game. Here is a high level description of the game:

1. You read in a valid dictionary of words for the game. The dictionary has n words which are each

strings of lowercase letters (no more than length 99). Each word is stored in a struct and the struct

stores the following information: the word itself, the length of the word and its score in Word

Game.

2. You will sort the list of these valid words as follows: words with higher scores come first. If

two words have the same score, then the tie will be broken alphabetically, with words that come

first alphabetically coming before words of the same score that come later alphabetically.

3. You will generate a list of k random letters which can be used to form words.

4. You will print out a sorted list (as previously described) of all of the words from the valid

dictionary that you can form using your k random letters. This will be a numbered list and you will

print out each word, along with its corresponding score.

Details for each function you will write will be discussed in the prompt for each individual section.

Included for you will be program upto the end of main (#includes, #defines, struct definition,

global variables function prototypes). This will be on the second page of the exam. The questions

will start on the third page.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

typedef struct word {

 char* str;

 int len;

 int score;

} word;

#define MAX 100

#define ALPHASIZE 26

int numWords;

void printResults(char* rack, word** list);

word** getWordList(FILE* ifp);

void sort(word** words, int length);

int cmp(const word* w1, const word* w2);

int contains(const char* letters, const word* item);

void setScore(word* item);

int* getFreq(const char* letters);

void print(const word* item);

char* rndLetters(int n);

void freeWordList(word** list, int len);

int main(void) {

 char filename[MAX];

 printf("Enter the file with your dictionary of words.\n");

 scanf("%s", filename);

 FILE* ifp = fopen(filename, "r");

 word** mywords = getWordList(ifp);

 fclose(ifp);

 sort(mywords, numWords);

 int i, numLet;

 printf("How many letters do you want for the game?\n");

 scanf("%d", &numLet);

 char* rack = rndLetters(numLet);

 printf("The letters you got this round are %s.\n", rack);

 printResults(rack, mywords);

 free(rack);

 freeWordList(mywords, numWords);

 return 0;

}

1) (10 pts) The first function to write is the function that takes in a pointer to the file storing the

words (this file has a single integer on the first line indicating the number of words in the file,

followed by the words, one per line on the subsequent lines.) This function first reads in the number

of words in the file into the global variable numWords. Then the function allocates space for an

array of numWords pointers to words. Then, the function will read the words from the file, one by

one. When reading them in initially, the words should be read into a fixed array of size MAX.

Then, space should be allocated for a word struct to store this word. First, the length of the word

should be set inside of the struct. Then, the pointer str should be dynamically allocated to point to

an array of the proper size to just store the word and the associated null character. Then, the word

should be copied into the struct. Finally, the score should be set for this word using the setScore

function. (Even though you haven't written this function yet, calling it should be straight-forward,

based on the function prototype provided.) Finally, you return a pointer to the array you have just

created.

word** getWordList(FILE* ifp) {

}

2) (3 pts) Write a function that takes in a pointer to an array of pointers to word as well as the

length of the array and frees all of the associated memory.

void freeWordList(word** list, int len) {

}

3) (4 pts) Write a function that sets the score of a word struct by taking in a pointer to that struct.

The scoring system is a bit strange. Define the value of an individual letter to be its alphabetic 0-

based rank. Thus, 'a' has value 0, 'b' has value 1, …, 'z' has value 25.

For a word with lowercase letters w0w1w2…wk-1 (subscripts are the array indexes where the letters

are), the score of the word is ∑ |𝑖 − 𝑣𝑎𝑙(𝑤𝑖)|
𝑘−1
𝑖=0 . For example, consider the word "cat." The letter

values are 2, 0 and 19, respectively. The score for this word is |0-2| +|1-0|+|2-19| = 20.

Your function takes in a pointer to a word and should set its score to 0, then it should go through

the word itself and update the score accordingly.

void setScore(word* item) {

}

4) (3 pts) Write a function that compares to word structs and returns a negative integer if the first

"comes before" the second, 0 if they are equal, and a positive integer if the first "comes after" the

second. We assume that the structs are completely filled (so the score component in them is

accurate). We compare as follows: if one struct's score is higher, it comes BEFORE the other

struct. If two struct's have the same score, then the one that comes first alphabetically comes

BEFORE the other struct.

int cmp(const word* w1, const word* w2) {

}

5) (7 pts) Pick your favorite O(n2) sort from this list: Selection Sort, Insertion Sort, Bubble Sort,

and implement it to sort an array of pointers to word structs. The sort should use the cmp function

from question #4 only to determine ordering.

void sort(word** words, int length) {

}

6) (5 pts) Write a function that takes in an integer, n, and returns a string of n random letters. Note

that your function must dynamically allocate space for n+1 characters, fill the first n of them with

randomly chosen lowercase letters. (Each letter should roughly have a chance of 1/26 of being

picked each time.) Fill the last slot with the null character and return a pointer to the array created.

char* rndLetters(int n) {

}

7) (5 pts) Write a function that takes in a string of lowercase letters, dynamically allocates a

frequency array of ALPHASIZE integers, fills this frequency array in accordance to the contents

of the input string and returns the array. Remember that the frequency array needs to be initialized

somehow before it gets filled.

int* getFreq(const char* letters) {

}

8) (8 pts) Write a function that takes in a string of letters (the letters the player has) and a pointer

to a word struct and returns 1 if the letters in the first parameter can be used to completely spell

the word stored in the struct. 0 should be returned if these letters can not be used to spell the word

stored in the struct. To solve the problem, call the getFreq function twice and use its return value

to make the determination. Remember that since these calls create dynamically allocated memory,

this memory MUST BE FREED before you return the result of the function.

int contains(const char* letters, const word* item) {

}

9) (1 pt) Write a one line function that takes in a pointer to a word struct and prints out the string

in the struct, followed by a colon and a space, followed by the score of the word struct, followed

by a new line character. Thus, for a word struct storing "cat", this should be printed:

cat: 20

void print(const word* item) {

}

10) (6 pts) Write the printResults function. This function should print out a numbered list of each

word that can be printed using the letters in rack, of the words pointed to by list. Since the list is

already ordered as previously described, this list will come out sorted the same way, listing words

for which the player would get more points first. Let's say you could only print out the words "cat",

"bat", "at" and "cab" with your letters (out of many more possible words), the corresponding output

your function should produce is:

1. cat: 20

2. bat: 19

3. at: 18

4. cab: 4

void printResults(char* rack, word** list) {

}

11) (8 pts) I bet you thought you were done with the Word Game. Sorry to disappoint you, but

you're not!!! Please do a detailed worst-case run-time analysis of the whole program, given that

the input dictionary has n words, each of the words in the input dictionary are at most length k, the

number of letters you get is at most length m and the alphabet size is a. Your analysis and final

answer must include each of these four variables, along with a written explanation as to how long

each piece of the code runs. So, your final answer ought to be the sum of a few terms, where each

term represents the run-time of one portion of the code.

12) (8 pts) Solve the following recurrence relation defined for non-negative integers, n, using the

iteration technique. Please solve the recurrence exactly, obtaining a closed-form solution for T(n),

in terms of n.

𝑇(𝑛) = 2𝑇(𝑛 − 1) + 2𝑛, for n > 0

𝑇(0) = 1

13) (6 pts) Consider a system where applicants for a job fill out a T/F questionnaire of no more

than 20 questions, indicating if they have certain skills or not. We can store the answer of a single

questionnaire in an int variable, where bit i is set to 1 if the applicant has skill i and is set to 0

otherwise. For example, the number 25 indicates that the applicant has skills 0, 3 and 4, since 25

= 24 + 23 + 20. For this problem, consider a situation where an array of integers of length len stores

the questionnaire answers for len number of applicants. A company has some set of required skills,

which can also be stored in a single integer. For example, if a company needs to hire an employee

and who they hire must have skills 2, 4 and 5, then the requirements for that job can be stored as

the integer 52 = 25 + 24 + 22. Write a function that takes in an array of integers storing the answers

to questionnaires, an integer, len, indicating the length of the input array, and an integer, req,

representing the minimum requirements for a position. Have the function return the number of

candidates who satisfy the minimum requirements for that position.

int getNumQualified(int* apps, int len, int req) {

}

14) (5 pts) A sorting algorithm with a runtime of O(nlg2n) takes .1 seconds to sort 220 integers.

How long would the algorithm be expected to take if it were sorting 225 integers. Write your answer

in seconds and put a box around your final answer.

15) (8 pts) Insert the following integers into an AVL tree in the order shown and put a box around

the result after EACH insertion: 10, 5, 2, 15, 20, 25, 13, 12 and 11.

16) (8 pts) Consider inserting several integers into a hash table of size 13 using the following hash

function and the quadratic probing method:

int hashfunc(int x) {

 int res = 0;

 while (x > 0) {

 res = (res + x%10)%13;

 x /= 10;

 }

 return res;

}

Show where each of the integers would end up in the table if these were the values inserted (in this

order): 63, 1872, 12345, 11, 7223, 88263, 2344, and 77876

index 0 1 2 3 4 5 6 7 8 9 10 11 12

17) (4 pts) Write an iterative function that takes in a pointer to the first node in a linked list and

returns 1 if the linked list is sorted from lowest to highest (ties allowed) and returns 0 otherwise.

typedef struct node {

 int data;

 struct node* next;

} node;

int isSorted(node* head) {

}

18) (1 pt) Panda Express serves Chinese food. From what country does the Panda hail? _________

Function Prototypes
// Allocates size bytes of uninitialized storage.

void* malloc(size_t size);

// Allocates a block of memory for an array of num elements,

// each of them size bytes long, and initializes all of its

// bits to 0.

void* calloc(size_t num, size_t size);

// Reallocates the given area of memory. It must be previously

// allocated by malloc, calloc or realloc and not yet freed

// with a call to free or realloc.

// This is done by either expanding or contracting the existing

// area pointed to by ptr, if possible. If not, a new memory

// block of size new_size bytes is allocated, copying memory

// area with size equal the lesser of the new and the old sizes,

// and freeing the old block. If there is not enough memory,

// the old memory block is not freed and null is returned.

void* realloc(void* ptr, size_t new_size);

// Deallocates the space previously allocated by malloc, calloc

// or realloc.

void free(void* ptr);

// Returns the length of the C string str.

int strlen(const char* str);

// Compares the C string str1 to the C string str2, returns

// a negative integer if str1 comes before str2

// lexicographically, 0 if they are equal, and a positive

// integer otherwise.

int strcmp(const char* str1, const char* str2);

// Copies the C string pointed to by source into the array

// pointed to by destination, including the terminating

// null character.

char* strcpy(char* destination, const char* source);

// Returns the absolute value of int x.

int abs(int x);

// Returns a pseudo-random number in the range of 0 and

// RAND_MAX, which is at least 32,767.

int rand(void);

Scratch Page - Please clearly mark any work you would like graded.

