Honors Computer Science I – Final Exam

Date: 4/27/10

Name: _________________________________

1) (15 pts) Consider a search in a sorted array where instead of searching halfway between the lowest possible index and highest possible index, you look 1/3rd of the way in between these two points. So, for example, on an initial search of an array of 100 elements (so low = 0, high = 99), the very first comparison would be made with the value in index 33, since 33 is 1/3rd of the way in between 0 and 99. What is the worst-case for the number of comparisons this algorithm would perform searching for an item in a sorted array of n elements? (Your answer must be accurate to within 1 comparison, thus a more exact answer has to be given than a theta bound.) Show the work necessary to justify your answer.

2) (10 pts) A recursive method for determining the square root of a positive number, n, greater than 1 is as follows:

1) Set a low = 1, high = n

2) Calculate the average of low and high, call this a.

3) Check to see if a is the desired square root, within a specified tolerance. Namely,

 determine if | a*a – n | < ε, for a chosen epsilon. If it is, return a.

4) If (3) didn’t produce an answer, reset either low or high to a and go back to step (2).

Utilize this same idea to write a recursive function that returns the cube root of its input parameter n. Use epsilon = 0.0000001. (Note: The current low and high are also passed into the recursive function. You are given the wrapper function that calls the recursive function below, as well as the function prototype for the recursive function.)

double cube_root(double n) {

 return cube_root_rec(n, 1, n);

}

double cube_root_rec(double n, double low, double high) {

}

3) (10 pts) Consider solving the Towers of Hanoi problem in the situation you are given a fourth tower. Prove that the solution for five disks must take at least 13 moves. (Incidentally, the problem can be solved in 13 moves.)

4) (25 pts) Write down the structure to support a doubly linked list of integers and an insert function that inserts an integer into an existing doubly linked list in order. Write a very short main to show how your function would be called.

5) (15 pts) Use the iteration technique to solve the following recurrence relation. (Note: Assume that n is a perfect power of 2.) Your answer should be an exact answer in terms of n without any order notation.

T(n) = 2T(n/2) + 1, T(1) = 1.

6) (20 pts) Consider storing a queue efficiently with a linked list. Fill in the code for the function that isn’t completed below. To make your job a bit easier, assume that any malloc you call succeeds.
struct node {

 int data;

 struct node* next;

};
struct queue {

 struct node* front;

 struct node* back;

};
void init(struct queue* qPtr) {

 qPtr->front = NULL;

 qPtr->back = NULL;

}
// Creates a new node storing val and enqueues it into

// the queue pointed to by qPtr.

void enqueue(struct queue* qPtr, int val) {
}

7) (5 pts) What are the last names of the founders of Goldman-Sachs? _____________________
Scratch Page – Please clearly mark any work on this page you would like graded.
