COP 3502 Final Exam

Spring 2004

4/20/04

Lecturer: Arup Guha

TA: _______________

Recitation Time: __________

First Name: _____________

Last Name: ______________

Directions: There are 115 total points on this exam. You must attempt exactly 100. You must omit three of the optional questions. The optional questions are 3, 6, 7, 11, 12, and 15.

List your omitted questions here: _____ , _____ , _____

Show all of your work!!! Full credit will not be given unless the appropriate work is shown. Partial credit may be earned for nearly all the questions, but can only be awarded if you show readable work.

1) (5 pts) Assume on the kth iteration of insertion sort, the average number of swaps performed is k/2. (Note: There are n-1 iterations of insertion sort when sorting n values.) Write a summation that represents the average number of swaps done when sorting n integers using insertion sort.

2) (5 pts) Find the value of the summation you answered for question #1 in terms of n.

3) (5 pts) Mark has written a new algorithm to sort integers. However, due to its complex nature he has not been able to identify the run-time of his algorithm yet. He has decided to run some test cases on random arrays of various sizes. Based on this information, determine if the run time of his algorithm is O(nlgn), O(n3/2) or O(n2). You need to show quantitative proof to get full credit for your answer.

	Input array size
	Running time

	1000
	1 ms

	4000
	8 ms

	16000
	65 ms

	64000
	510 ms

	256000
	4.1 sec

4) (8 pts) Consider the following algorithm that computes a square root recursively:

Given a value n for which to find the square root, along with a low and high bound for that square root (it’s known that low<sqrt(n) and sqrt(n)<high), do the following:

a) Calculate mid = (low+high)/2;

b) Check if mid*mid is within .0001 of n. If it is, return mid.

c) Otherwise, depending on whether mid is too low or too high, reset either low or high to mid and recursively find the square root of n.

Write a recursive function to carry out this algorithm below:

// Assume low, high and n are positive.

double squareroot(double n, double low, double high) {

}

5) (5 pts) What is the return value of f(10) given the definition of f below?

int f(int n) {

 if (n < 2)

 return n+1;

 else if (n%2 == 0)

 return f(n-1)+f(n-2);

 else

 return f(n-1);

}

6) (5 pts) Assume you are implementing a queue using a linked list type struct as follows:

struct queue {

 int data;

 struct queue *next;

};

Also assume that the head of the linked list is the back of the queue. What is the worst case running time of enqueing an element? What is the worst case time of dequeuing an element?

7) (5 pts) Draw the resulting AVL tree after inserting the element 26 into the tree below. (Draw the final result after the rotation.)

20

 /
 \

 12 40

 /
 / \

 6 25 50

 / \

21 27

8) (12 pts) Consider implementing a queue using a dynamic array. Included below is code for an init function (to initialize an empty queue) and a dequeue function. Write the enqueue function in the space below that. A prototype and a few comments have been provided for you.

#define INIT_SIZE 10

struct queue {

 int *values;

 int arraylength;

 int front;

 int numvalues;

};

// Initializes an empty queue.

void init(struct queue *q) {

 q->values = (int*)malloc(INIT_SIZE*sizeof(int));

 q->arraylength = INIT_SIZE;

 q->front = 0;

 q->numvalues = 0;

}

// Dequeues the front element of the queue. Only works if

// the queue is non-empty.

int dequeue(struct queue *q) {

 int retval;

 retval = q->values[q->front];

 q->front = (q->front+1)%q->arraylength;

 q->numvalues--;

 return retval;

}

// Enqueues the value val to the back of the queue pointed

// by q. If the queue is full, space is dynamically

// allocated to accomodate the new element.

void enqueue(struct queue *q, int val) {

 // Variable declarations.

 // Check to see if there is room in the queue.

 // If so, do the easier case of enqueuing.

 // Take care of the case where the queue is full.

 // Copy all elements over into a newly allocated

 // temporary array.

 // Add in the new element.

 // Adjust for the new array length and number of values,

 // as well as the new front of the queue.

}

9) (5 pts) Consider the following expression in infix notation:

A + B (X (2 + CY) – D / Z E
Using a stack, transform this infix expression into a postfix expression. Trace the state of the operator stack as each character of the infix expression is processed. Show the contents of the operator stack at the indicated points in the infix expression (points X, Y and Z). Put the final postfix expression in the box.

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	X
	
	Y
	
	Z

The resulting postfix expression is:
10) (5 pts) Given the postfix expression shown below, use a single stack to evaluate the expression. Show the contents of the stack at the reference points marked in the expression as X and Y. Assume the variables have the following values at the time of the evaluation:

A = 2, B = 3, C = 6, D = 2, E = 2

The postfix expression: A 2 B +X (C D / (4 EY (+

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	X
	
	Y

Final value of the expression is: ________

11) (5 pts) In Strassen's algorithm, to solve a problem with an input size of n, you make 7 recursive calls with input size n/2 and also do O(n2) extra work. Write down a recurrence relation for T(n), the running time of Strassen's algorithm on an input of size n.

12) (5 pts) Using the Master Theorem, solve for T(n) in the recurrence above.

13) (10 pts) Given the following Binary Tree, answer the questions below :

a) Is this a valid Binary Search Tree? (circle one)
YES

NO

b) List the nodes of this tree in the order that they are visited in a postorder traversal:

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 first node

 last node

 visited

 visited

c) Perform the following procedure on the tree above, listing the output in the spaces below and leaving any unused spaces blank. Assume that the procedure is initially called with P14(root, 30), where root is a pointer to the node storing 60 in the tree on the previous page and that the tree nodes and pointers are defined as:

struct tree_node {

 int data;

 struct tree_node *left;

 struct tree_node *right;

 };

void P14 (struct tree_node *node_ptr, int key) {

 if (node_ptr != NULL) {

 P14(node_ptr->left, node_ptr->data - key);

 if (node_ptr->data > key) {

printf("%d ",node_ptr->data);

P14(node_ptr->right, node_ptr->data + key);

 }

 }

 }

14) (10 pts) For the unsorted array A[0..15] shown below, answer the following questions:

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	8
	6
	10
	4
	14
	9
	15
	3
	13
	7
	2
	16
	5
	12
	1
	11

a) Assuming that A is being Merge-Sorted, show the contents of the array right after the 7th call to the Merge method. (Note: there are a total of 15 calls to the Merge method in the entire Merge Sort.)

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b) (4 pts) In a Quick Sort of A, the partition elements (not indexes!!!) were 8, 4, 2, 6, 12, 10, 15, and 13, in that order. After the partition with the element 15, what are the possible values of A[12]?

15) (5 pts) Consider an Algorithm A where if the input size n is increased by 1, the running time doubles. What is the running time of A, in terms of Big-Oh and n, the input size?

16) (15 pts) A frequency array in statistics stores the frequency of different responses to a survey. For example, imagine surveying 1000 students asking them how many hours of TV they watch in a day. (Assume all responses you get are integers in between 0 and 9, inclusive.) Then you could store the data of how many of each response you got in an array as follows:

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	155
	45
	200
	173
	217
	100
	94
	5
	0
	1

This data means that 155 people watch 0 hours of TV a day, 45 watch 1 hour a day, 200 watch 2 hours a day, etc.

A cumulative frequency array in statistics stores the number of responses that are less than or equal to a particular value. The cumulative frequency array that corresponds to the array above is as follows:

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	155
	200
	400
	573
	800
	900
	994
	999
	999
	1000

For example, the value stored in array element 6, 994 represents that 994 people watch 6 or less hours of TV a day.

Finally, a cumulative relative frequency array is the same as a cumulative frequency array, except that each element in the array is divided by the total number of participants in the survey. Thus the cumulative relative frequency array that corresponds to the original data is:

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	.155
	.2
	.4
	.573
	.8
	.9
	.994
	.999
	.999
	1

Note that by definition, the last element in the array will always be 1.

Given an frequency array of n values, your job is to write a function that creates the corresponding cumulative relative frequency array and return a pointer to it in O(n) time. The function prototype is given on the following page. Don't forget to first allocate space for your new array in the function based upon the length of the integer array passed into the function.

// Takes in a frequency array of length length and creates

// and returns the corresponding cumulative relative

// frequency array with length length.

double* makeArray(int frequency[], int length) {

 // Declare variables.

 // Allocate space for cumulative relative frequency array

 double *newarray = malloc(length*sizeof(double));

}

18) (5 pts) Why does your algorithm take O(n) time?

Scratch Page - Clearly mark any work on this page you would like graded.

Another Scratch Page - Clearly mark any work on this page you would like graded.

60

70

25

80

698

10

30

15

90

40

75

96

12

78

72

36

