Computer Science I

(COP 3502)

Exam 2 Spring ‘00

Date: 3/29/00

Lecturer : Arup Guha

Name : ___________________

Section : __________________

TAs: _____________________

SSN : ____________________

Note : Assume that all questions refer to the pseudocode presented in the textbook unless otherwise noted.

1) (3 pts) Which of the following statements is true about a recursive functions?

a) They can have out parameters.

b) All calls to recursive functions result in another call to the same function.

c) They must NOT contain a loop.

d) They usually contain an if statement, which checks to see whether or not a recursive call needs to be made to solve the problem at hand.

e) They contain exactly one recursive call to the function.

2) (5 pts) Consider the following data structure and variable definitions:

Toppings_Array definesa array[1..10] of String

Pizza_Type definesa record

crust isoftype String

toppings isoftype Toppings_Array

endrecord

my_pizza isoftype Pizza_Type

Write a short segment of code to initialize my_pizza to have a “thin” crust and to have all 10 toppings be “anchovies”. Declare any variables you need to.

3) (3 pts) Which of the following is false about arrays?

a) They can store multiple data items.

b) Once you create an array, its size if fixed.

c) They can contain data items of different types.

d) They can contain records.

e) They are indexed from 1 to the length of the array.

4) (5 pts each) Compute the following summations :

a)
[image: image1.wmf]å

=

+

99

10

7

2

i

i

 =

b)
[image: image2.wmf]å

=

-

70

0

35

i

i

 =

5) (10 pts) All of the sorting questions on this exam will use the following array type:

Num_Array definesa array[1..8] of Num

The following incomplete procedure is supposed to take in a parameter of type Num_Array and sort it in increasing order. Fill in the blanks so that the procedure correctly does this :

SIZE is 8

procedure Simple_Sort(numbers isoftype in/out Num_Array)

 i, j isoftype Num

 i <- 1

 j <- 2

 loop

 exitif (_________________)

 loop

 exitif (___________________)

 if (numbers[j] < numbers[i]) then

 temp isoftype Num

 temp <- _____________

 _____________ <- ________________

 _____________ <- ________________

 endif

 j <- ________________

 endloop

 i <- _________________

 j <- _________________

 endloop

endprocedure

6) (2 pts) Which of the following sorts that have been presented in class use a nested loop structure? (Note: there may be more than one answer to circle. You must circle all that apply to get full credit.)

a) Merge Sort

b) Insertion Sort

c) Quick Sort

 d) Bubble Sort

7) (7 pts) Consider the following procedure that takes in a pointer to a Tree_Node :

Tree_Node definesa record

 data isoftype Num

 left_child isoftype Ptr toa Tree_Node

 right_child isoftype Ptr toa Tree_Node

 endrecord

procedure Traverse_Tree(current_ptr isoftype in Ptr toa Tree_Node,

x isoftype in/out Num)

 if (current_ptr <> NIL) then

 Traverse_Tree(current_ptr^.left_child, x)

 x <- x + current_ptr^.data

 print(x)

 Traverse_Tree(current_ptr^.right_child, x)

 endif

endprocedure

Consider the following code segment :

this_num isoftype Num

this_num <- 0

Traverse_Tree(head, this_num)

where head is pointing to the following structure at the time of the procedure call:

head

 |

 3

 / \

9 8

 / \ / \

 7 6 1 2

 What will the procedure print out?

 ______ , ______ , ______ , ______ , ______ , _______ , ______

8) (3 pts) What type of binary tree traversal is used in question 7?

a) Inorder

b) Preorder

c) Postorder

9) (10 pts) The Lucas numbers are defined as follows :

L(n) = L(n-1) + L(n-2), for all integers n > 2.

L(1) = 1, L(2) = 3.

So, the first few Lucas numbers are 1, 3, 4, 7, 11, 18, etc. Write a recursive function that computes the value of the nth Lucas number. (For example, if the function was called with the parameter 6, is should return 18.) The function header is given below :

// Pre- condition : n is a positive integer.

// Post-condition: the function will return the nth Lucas number.

function Lucas_Number returnsa Num(n isoftype in Num)

 endfunction

10) (5 pts) The next two questions will be about linked lists and will build upon each other. Define a type that is going to be the node of a linked list. Each node should store the three dimensions of a box, length, width and height. Name your type Box_Node.

11) (15 pts) Write a function that takes in a pointer to a Box_Node. Your function should return the volume of the box with the maximum volume of those in the linked list pointed to by the parameter passed to the function. The function header is given to you below:

// Pre-condition: head is NOT NIL.

function Max_Volume returnsa Num(head isoftype Ptr toa Box_Node)

endfunction

12) (5 pts) Consider Merge Sorting the following list of numbers: 3, 2, 9, 10, 18, 4, 5, 11, 14, 1, 8, 17, 20, 6, 13, and 12. How many recursive calls to the Merge Sort procedure are made before the first call to the Merge procedure? (Note: Do not count the ORIGINAL call.)

13) (15 pts) In this problem you will use a prewritten function to sort an array. First you will be given a function that takes in a parameter numbers of type Num_Array, and another parameter place of type Num. This function will determine the correct location for the element stored in the place index of the array numbers. The function will then return this value.

// Pre-condition: All values stored in numbers are distinct.

function Find_Correct_Location returnsa Num(numbers isoftype in Num_Array,

 place isoftype in Num)

 index, location isoftype Num

 index <- 1

 location <- 1

 loop

 exitif (index > 8)

 if (numbers[place] > numbers[index]) then

 location <- location + 1

 endif

 endloop

 Find_Correct_Location returns location

endfunction

You must use this function to sort an array. To make things easier, your procedure will take in two parameters of type Num_Array. One will be an in parameter storing the unsorted numbers and the other will be an out parameter, which will store the sorted numbers. Your procedure must fill in this second array with all the numbers from the first array, except that they must be in sorted order, from smallest to largest. The procedure header is given below. (Note: Use the next page if necessary.)

procedure Another_Sort(unsorted isoftype in Num_Array,

 sorted isoftype out Num_Array)

endprocedure

14) (1 pt each) Here are a few True/False, circle the correct answer.

a) The left side of a binary tree must have

TRUE

FALSE

 the same number of nodes as the right.

b) The field of a record can not be the same as

TRUE

FALSE

the type the record is defining.

c) The record storing a node for a linked list must
TRUE

FALSE

 have a field of type Num.

 d) Two arrays of different sizes are of different types.
TRUE

FALSE

 e) A field of a record may not be an array.

TRUE

FALSE

f) Quick Sort always works significantly better

TRUE

FALSE

than Bubble Sort.

15) (1 pt) Name one food item typically sold at Hot Dog stands : _________________

You may place any scratch work here. No work on this page will be graded.

_1015408783.unknown

_1015416538.unknown

