COP 3502

UNIVERSITY OF CENTRAL FLORIDA (UCF)

Department of Computer Science
COP 3502 Computer Science |
Common Final Examination
Total points: 100 Total Time: 2 hours and 30 minutes

COP 3502 Sections Instructor
(Circle your section)
1 Arup Guha
2 Awrad Mohammed Ali
3 Tanvir Ahmed
4 Mahfuzur Rahaman

Last Name in Upper Case Letter:

First Name in Upper Case Letter:
UCF ID:

Did vou circle vour section above?

Instructions:

1. This is a closed-book and closed-neighbor exam. No notes, textbooks, or
outside assistance are permitted.

2. Calculators, smartwatches, and electronic devices (phones, tablets,
laptops, earbuds, etc.) are strictly prohibited.

3. If you would like to use scratch paper, please come up to the front of the
room and request some after the exam has started.

4. Write clearly and legibly. If the instructor cannot read your handwriting, the
answer may not receive credit.

5. Manage your time wisely

COP 3502
A. Multiple Choice/Fill in the Blanks/Short Answer Questions [1 x 5 =5 pts]

1. Consider a heap is represented by the following array. The first item is stored at index 1. Answer the following
questions (please answer the data not the index!!!)

index 1 2 3 4 5 6 7 8 9 10 11
data 6 10 12 15 17 18 23 20 19 34

a) What value is stored in the right child of node storing 12?

b) What value is stored in the parent node of the node storing 19?

2. In the array-based representation of a queue, we must store the elements in an array, the index to the front of
the queue, the actual size of the array, and what one other value?

3. Which of the following two applications most likely utilize a stack instead of a queue:
(a) Undo operation (b) Ticketing center (c) Tracking the jobs in a network printer

(d) Job scheduling by operation system (e)Tracking function calls in a program

2

4. In one way, a trie is more efficient (uses less memory) in storing words from a dictionary than an array of
strings, but in another way it's less efficient (uses more memory). Explain how the trie comparatively saves
memory AND how it uses extra memory.

Answer:

5. Which data structure is used to maintain priority queue efficiently?

B. Summations [2 + 5 =7 pts]

1. The code segment below stores the sum of several terms in a variable called sum. Write, but do not solve, the
nested summation that corresponds to what the variable sum is equal to.

int sum = 0;
for (int 1=1; i<100; 1i++)
for (int j=1; Jj<=i; j++)

sum += (2*i+3*7j);

printf ("sum = %d.\n");
Answer:

COP 3502

2. Determine a closed-form solution for the summation shown below, in terms of n. Express your answer in
standard polynomial form an’ + bn + ¢, where a, b and ¢ are constants. [You must show the steps of splitting
and/or shifting when applicable to receive full credit]

n 3i+7

YO

i=1 j=1

C. Recurrence Relations [1 + 6 =7 pts]

1. Consider the following recursive function. Write out the corresponding recurrence relation T(n) such that T(n)
equals the value that compute(n) returns. (You do not need to solve the recurrence relation)

int compute (int n) {
if (n == 1)
return 2;
else
return 2 * compute(n - 1) + 3;

Answer: T(n) = ,forn>1,T(l)=__

COP 3502

2. Use the iteration technique to determine the Big-Oh run-time of the following recurrence relation. You may
find the following formula useful while solving this: alogak n __ %

[Rubric (6 pts): 2 iterations 2 pts, general form 1 pt, getting value of k and apply k to the general form 1 pt,
further simplification 1 pt, final bigOh I pt]

T(n) = 2T (E) +5 T(1) =1

D. Sorting Algorithms (3 +2 + 4 + 3 =12 pts)

1. Consider running a Merge Sort on the array shown below. What does the array look like right before the last
call to the Merge function executes:

Original Array:
index |0 1 2 3 4 5 6 7 8
value | 37 15 9 17 22 64 2 25 6 13

Array right before last call to Merge:
index |0 1 2 3 4 5 6 7 8 9
value

COP 3502

2. Quick Sort has an average running time of O(nlogn), but in the worst case it is O(n?). Briefly explain what type
of input and quick sort implementation can cause Quick Sort to run in its worst case, and why Merge Sort does
not suffer from the same worst-case behavior.

Type of input and quick sort implementation (1 to 3 lines):

Merge sort discussion (1 to 3 lines):

3. The following function tried to implement insertion sort to sort only the numbers between the left index to the
right index (both inclusive) passed to the function. However, it has four bugs. Correct the bugs directly on top/side
of the line.

void insertionSort (int arr[], int left, int right) {
int i, hand, 7j;
for (i = left+l; i < right; i++) {
hand = arr[i];

for (j=right-1; j>=0; j--) {
if (arr[j]>hand)
arr[j+1] = arr[j];
else
break;

}

arr[j] = hand;

4. The array shown below has been partitioned exactly once (first function call in a quicksort of an array). Observe
the following partitioned array and answer which element was the partition element. Why do you think that is the
partition element (Mention three reasons that really validate that your chosen item is the partition element.

index

1

5

data

17

20

13

10

27

50

34

a) Partition Element Index:

¢) Reason this is the only possible partition element:

b) Value of Partition Element:

COP 3502
E. Binary Trees (5 + 3 + 2 =10 pts)

1. Write a recursive function in C that identifies and prints out the value all nodes in a Binary Search Tree
(BST) that have two children, in numeric order.

typedef struct treenode {
int data;
struct treenode *left;
struct treenode *right;
} treenode;

void twoChildren (treenode *root) {

}

2. Given the following code:

50
int mistery(struct treenode* root, int k) { / \
if (root == NULL)
return 0; 20 80
int s = mistery(root->left, k) + mistery(root->right, k); / \ / \
if (root->data > k) 10 30 70 90
s += root->data; / \
return s; 25 40

}
What would be returned from this function if we pass the root of the tree shown on the right side and k=30?

Answer:

3. Consider the following binary search tree. Redraw the tree after deleting 55. (Note: There are two correct
answers to this question.)

55
/N
20 75
/N / A\
10 30 70 80

/N A
25 35 T2

/
32

COP 3502
F. Binary Heaps (1 +5+2 + 2 =10 pts)

1. Consider the following tree. Is this a valid binary minheap? Before answering carefully observe if it fulfills all
the properties of a binary heap. Justify your answer. Just saying yes/no has no credit without justification.

2. Consider a min heap is stored in an integer array int heaparray[100], which is globally declared. There are
currently heapsize number of nodes in the heap, and heapsize is also globally declared. The first item of the
heap is stored at index 1. Assume the following functions are already provided to you:

void percolateUp(int arr[], int upIndex); //it performs percolate up starting from index upIndex.

void percolateDown(int arr(], int downlndex); //it performs percolate down starting from index downIndex.

Write a heaplnsert() function that takes an item, and heap array in the parameters, and insert the item into the
heap. If the heap array does not have enough space, it returns 0. If the insertion is successful, it returns 1.
Note that heapsize is globally declared, and you can simply use heapsize variable when needed.

/I arrCap is the size of the array heapArr.

int heapInsert (int heapArr[], int arrCap, int item) {

}
3. a) What is the run-time to build a binary heap with n items using heapify:

b) What is the run-time to delete the minimum item from a binary heap with n values? Please give your
answer in Big-Oh notation in terms of n:

4. Consider the following function, where a binary heap is stored in the arr array. This function implements one
of the following heap functionalities. Choose the most appropriate answer from the following list of options.

void whatIsThis(int arr[], int index){ Choose the best option:

if (index > 1) { o percolate down for a minheap
if (arr[index/2] < arr[index]) {

swap(&arr[index], &arr[index/2]); o percolate down for a maxheap
whatlsThis(arr, index/2); o percolate up for a minheap
) o percolate up for a maxheap
) o heapify
} o heapsort

COP 3502

G. Tries (2 + 1+ 5 =8 pts)

1. How many nodes would be in a trie (including the root node) after inserting all the following words: potler,
pot, pond, to, top, torn, ton

2. How many nodes would be there in total if we never inserted potler into the trie but inserted the rest of the
words listed in question G1?

3. Consider the following trie node struct

typedef struct trie node {
int isWord; //1 if it is a word, 0 otherwise
struct trie node* next[26];

} trie node;

Write a iterative function hasPrefixPlusOne that returns 1 if there exists a word in the trie that has the form: prefix
+ one extra letter, and returns 0 otherwise. For example, if the trie contains cat, car, cart and prefix = “ca”, then
hasPrefixPlusOne(root, “ca”) should return 1 because cat and car match. However, if you call the function with
cat, it should return 0 as there is no word of length 4 with “cat” as a prefix. You may assume that if a pointer is
not NULL in a trie that there is at least one word down that subtrie.

int hasPrefixPlusOne (trie node *root, char prefix[]) {

COP 3502
H. Bitwise Operators and Base Conversion (2 + 5 =7 pts)

1. Perform the following base conversions:
a) 9Cis="7?7s Answer:

b) 11710=?, Answer:

2. An int sample contains a virus if the 8 bits from the right side of the sample have at least n (n<8) number of bits
set to 1. Write a function that receives an int sample and an int n and returns 1 if the sample contains the virus.
Otherwise, the function returns 0. For example, if sample = 14 and n = 2, then the 16-bit binary representation of
14 is 0000000000001110. As the right 8 bits has 3 ones (which is > 2), the function should return 1 indicating
that the virus is present in the sample. On the other hand, if n = 4, for the same sample = 14, the function should
return 0 as the right 8 bits of the sample has less than 4 ones.

int hasVirus (int sample, int n) {

}

I. Hash Tables (5 + 1 = 6 pts)
1. Using the quadratic probing technique and the hash function f(x) = (3x+2)%13, show where each of the
following values would be placed in a hash table of size 13, if inserted in this order: 4, 1, 6, 3, 13, 17, and 7:

index |0 1 2 3 4 5 6 7 8 9 10 11 12

value

2. What is the common problem of linear probing (one line)? Answer:

COP 3502
J. AVL Trees (3 +5 = 8 pts)

1. All AVL Trees are Binary Search Trees but not all Binary Search Trees are AVL Trees. Draw a valid Binary
Search Tree storing the values 1, 2, 3, 4 and 5 that is NOT a valid AVL Tree. Describe the additional requirement
for a Binary Search Tree to also be an AVL Tree.

a) Drawing:

b) Additional AVL Tree Requirement:

2. Consider the following AVL tree. Insert 85 to this tree. If the tree requires re-balancing, then redraw the tree
after rebalancing it.

COP 3502
K. Dynamic Memory Allocation (5 pts)

The following code has 5 memory management issues. Identify and write the issues clearly beside the lines as a
comment. You can assume that the code will continue till the end of the function while answering this question.
(Grade: Total S pts. [For each identifying 0.5 pt, proper reasoning 0.5 pts]. A wrong answer will deduct a
point from a correct answer.)

int n = 10,
int *pl, *p2, *p3, **p4;
char strl1[100] = "test string ";
char *str2;
strcpy (str2, strl);
pl = (int *)malloc(n * sizeof (int));
P2 = (int *)malloc(n * sizeof (int));
for (int i=0; i<n; 1++)

pl[i] = rand()%100;

p2 = pl;
*p3 = 50;
p4 = (int **) malloc(n * sizeof (int¥*));

for (int i=0; i<n; 1++)
p4[i] = rand()%100;

free(pl);
free (p2);
free(p4);

L. Stack/Queues (5 pts)

A word is called a palindrome if it reads the same when reversed. For example, the word “planet” is not a

palindrome because its reverse, “tenalp,” is different from the original. In contrast, the word “rotor” is a

99 ¢c 9 ¢

palindrome, since reversing it still gives “rotor.” Other examples of mirror words include “noon,” “civic,” “radar,”

and “pip.”

Write a function that takes a string as its parameter and returns 1 if the string is a mirror word and O otherwise.
You must use stack operations to perform this check.(Your grade depends on correctly using the stack, not on
simply solving the problem.) Assume the following stack functions are already provided. The stack has enough
space. The top of the stack is controlled through standard push/pop operations.

#include <stdio.h>
#include <string.h>

void initialize (stack* s); // initializes an empty stack

int push(stack* s, char value); // pushes a character onto the stack

int isEmpty(stack* s); // returns 1 if the stack is empty, 0 otherwise
char pop(stack* s); // pops and returns the top character

char peek(stack* s); // returns the top character without removing it

/I (pop and peek return 'T' if the stack is empty)

COP 3502

//Complete the following function:

int isPalindrome (char *str) {
stack s; //you really don’t need to know the properties of stack
initialize (&s);
int len = strlen(str);

}
M. Linked Lists (5 pts)
Write a recursive function that takes in a pointer to the head of a linked list, head, and a positive integer, div,
and prints out each value stored in the list divisible by div.
typedef struct node {
int data;
struct node* next;

} node;

void printDivisible (node* head, int div) {

N. Algorithm Analysis (5 pts)

Write the run-time of the following operations/algorithms:
a) Worst case run-time of inserting a word with length p in a trie:

b) Worst case run-time of inserting an item in a binary heap of n elements:
c) Best case run-time of insertion sort of n elements:

d) Best case run-time of selection sort of n elements:

e) Best case run-time of merge sort of n elements:

