Computer Science I

Exam #2
July 13, 2009

Name : _____________________________
1) (6 pts) An O(n2) algorithm takes 12ms to run with an input size of n = 2500. How long will it take to run on an input size of n = 7500?

2) (6 pts) An O(n3) algorithm takes 96ms to run with an input size of n = 800. On a different data set, the algorithm takes 12ms. What is the approximate size of that data set?

3) (10 pts) Determine the value of the variable sum at the end of the following code segment:

int sum = 0;

int i, j;

for (i=1; i<100; i++)

 for (j=1; j<=i; j++)

 sum += 3;

4) (5 pts) What is the worst-case run-time, in terms of n, of the following function? Give your answer in Big-Oh notation.

int q4(int values[], int n) {

 int i, j, cnt=0;

 for (i=0; i<n; i++)

 for (j=0; j<5; j++)

 if (values[i] == values[rand()%n])

 cnt++;

 return cnt;

}

5) (10 pts) Convert the following infix expression into its equivalent postfix expression using a stack. Show the contents of the operator stack at the indicated points in the infix expressions (points 1, 2 and 3), and also the final postfix expression. You may draw another stack alongside for your work.

 1

 2
 3

A * (B + C / (D + E)) – F * (G / H + I)

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	1
	
	2
	
	3

postfix expression upto 1 : ___

postfix expression upto 2 : __

postfix expression upto 3 : ___
Final postfix expression : ___

6) (8 pts) Utilize an operand stack to evaluate the following postfix expression. Show the contents of the stack at each of the indicated points:

 1
 2
 3

3 6 10 2 3 + / + * 4 8 2 / 1 + * -

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	1
	
	2
	
	3

Final Value: ____________

7) (15 pts) An incomplete version of a linked list implementation of a stack is below. Fill in the code for each function that is empty.

struct stack {

 int data;

 struct stack *next;

};

void init(struct stack *front) {

 front = NULL;

}

// Returns a pointer to the new front of the stack. Assume that allocating

// space for the new node is always successful.
struct stack* push(struct stack *front, int num) {

}

// Returns the new front of the stack and sets the variable pointed to

// by ptrTop to the value popped from the top of the stack. If no such

// value exists, NULL is returned and the the variable ptrTop is pointing

// to is set to 0.
struct stack* pop(struct stack *front, int* ptrTop) {

 struct stack *temp;

 *ptrTop = 0;
 if (front != NULL) {

 temp = front;

 front = front->next;

 *ptrTop = temp->data;

 free(temp);

 return front;
 }
 else

 return NULL;
}

// Returns 1 if the stack is empty, 0 otherwise.
int empty(struct stack *front) {

}

8) (5 pts) Draw a binary search tree created by inserting the following items in this order: 50, 25, 80, 70, 60, 75, 90, 12, 37, 6, 3 and 44.

9) (9 pts) Determine the preorder, inorder and postorder traversals of the following binary tree:

30

 / \

 10 13

 / \ /

 67 18 9

 / / \ \

 14 2 27 34

 / \ / \

 12 6 3 81

Preorder: ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___

Inorder: ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___

Postorder: ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___
10) (5 pts) What is the result of deleting 37 from the binary tree depicted below?

45

 / \

 37 87

 / / \

 20 56 98

 / \ / \

 10 33 92 99

 / \

 22 36

11) (10 pts) Write a recursive function that returns the number of nodes in a binary search tree. The struct used and the function prototype are given below:
struct tree_node {

 int data;

 struct tree_node *left;

 struct tree_node *right;

};
int numnodes(struct tree_node* root) {

}

12) (10 pts) Write a recursive function that calls the function from question 11 to determine the kth smallest item stored in a binary search tree. Both a pointer to the root of the tree and k are parameters to the function. You may assume that k will always be an integer in between 1 and the number of nodes in the tree. Fill in the prototype below:

int findKthSmallest(struct tree_node* root, int k) {

}

13) (1 pt) Many of the street names in College Park are named after what type of institutions?

Scratch Page – Please clearly mark any work on this page you would like graded.
