Honors Computer Science I (COP 3502) Exam #2
Date: 3/14/2024

Name:

1) (6 pts) What is the output of the following C program?

#include <stdio.h>

void f(int a, int b) {
if (b == 0) return;
printf ("%d ", a);
f(2*a, b-1);

}

int main () {
£(3,6);
return 0;

2) (7 pts) The following is the preorder traversal of a binary search tree. Draw the tree below.

30, 15, 8, 22, 18, 26, 24, 25, 40, 32, 60, 50, 45, 55

3) (12 pts) In class we wanted to try subsets of 7 unique letters to see how many scrabble words
they could form. Complete the code below so that it prints out all combinations of 7 letters out of
the 26 letters (each in alphabetical order).

#include <stdio.h>
#include <string.h>

void go(char* cur, int k, int n);

int main () {
char word[8];
word[0] = '"\0';

go (word, 0, 7);
return O0;

void go(char* cur, int k, int n) {

if (strlen(cur) == n) {

}

int start = 0;

if (k > 0) start = ;

for (int i=start; 1i<26; i++) {

4) (15 pts) Imagine using a doubly linked list to store subway stops on a line. Write a function,
printLoop, that takes in a pointer to a node in a doubly linked list representing a subway line, and
prints out each stop visited on a round trip that starts at that node, goes all the way “to the right”
following the next pointers until reaching the last node/subway stop, then goes all the way “to the
left” following the previous pointers, and finally comes back moving right, ending at the original
starting location. For example, if the full double linked list stored “first” < “second” < “third”,
< “last”, and the function was given a pointer to the third node, then the function should print

third last third second first second third

Notice that at both turns, the stops at the end are only printed once, not twice. (Hint: writing three
separate for loops, instead of while loops, shortens the code.) You may assume the linked list
has at least three nodes and that current is not pointing to the first or last item in the list.

#include <stdio.h>
#include <stdlib.h>

typedef struct dll /{
char name[100];
struct dll* prev;
struct dll* next;
} dll;

void printLoop(dll* current) {

5) (10 pts) Evaluate the following postfix expression shown below (just figure out its final value)
and represent this expression in a binary expression tree. To form a binary expression tree, put the
operator in the root node, the first operand in the left child and the second operand in the right
child. For example, the expression tree for (3 +4) * 5 is

Postfix Expression: 15 8 3 - / 2 4 + * 6 3 - /

Value of Expression:

Draw Expression Tree Below:

6) (5 pts) What is the fewest number of nodes in an AVL tree with height 6? Briefly explain how
you got your answer.

Answer:

Reasoning/Work:

7) (15 pts) Question 5 referred to the fact that we can store an arithmetic expression in an
expression tree. Note that all operands are stored in leaf nodes and all operators are stored in
internal nodes with two children in such a tree. Write a function that takes in a pointer to the root
of an expression tree and returns the value of the expression. It’s guaranteed that the pointer is
pointing to a valid expression tree (so no NULL check is necessary for the root). The struct storing
a node is stored below, but to allow to store both numbers and operators, both fields will exist in
every node, with only one of the fields being meaningful. The struct is given below, The valid
operators are ‘+’, *-, “*” and /°. Numbers are stored as doubles and you may assume that you will
be given well-formed expressions that do not contain any sub-operation that is divide by 0.

typedef stuct exprnode {
double x; // value if value is stored.
char op; // operator if operator is stored.
struct exprnode* left;
struct exprnode* right;
} exprnode;

double eval (exprnode* root) (|

8) (5 pts) Show the result of inserting 39 into the AVL Tree shown below. (Draw a box around
your final answer.)

9) (9 pts) A calculator has a single positive integer on its display and has three operations: (a) add
a digit to the number (1 through 9), (b) multiply the number by a digit greater than 1 (2, 3, ...,9)
or (c) concatenate a digit (0 through 9) to the end of the number. Given a starting number on the
calculator display and a desired finish number on the calculator display, a breadth first search
(discussed in class) can be used to figure out the fewest number of operations necessary to
transform the starting number to the ending number. In the breadth first search, given a current
number, all numbers that can be reached with a single operation must be calculated. Write a
function that takes in a positive integer n < 10° and prints out each number that can be obtained
from n in a single operation described above. It’s okay if a particular number is printed more than
once because it can be obtained in a single move in more than one way. Values can be printed in
any order.

void printnext (int n) {

10) (15 pts) In games such as Wheel of Fortune, we often know some of the letters in a word but
not all of them. For example, if the word we were trying to guess was “vacation”, then it’s possible
we might only know the location of the a’s and n. In this case, we could express our knowledge of
the word as “*a*a***n”, where a ‘*’ character stands in for each unknown character. For this
problem, you’ll use a trie to determine the number of words that a given string in this format
matches in the dictionary of words stored in the trie. Complete the code below (wrapper function
is complete and has initial call to the recursive function) to solve the problem.

typedef struct trie {

int isWord;

struct trie* next[26];
} trie;

int numfit(trie* root, char* mold) {
return numfitrec (root, mold, 0, strlen(mold)):;

}

int numfitrec(trie* root, char* mold, int k, int n) {

}

11) (1 pt) What’s the first name of the owner of Beth’s Burger Bar?

Scratch Page — Please clearly mark any work on this page you would like graded.

