

COP 3502 Section 2

Exam #2

Version A

Spring 2017

3/23/2017

Lecturer: Arup Guha

Directions: Answer all multiple choice questions on the

scantron. Each question has a single correct answer. In case of

ambiguities, choose the most accurate answer. Each of these

questions is worth 4 points for a correct answer. Incorrect

answers and questions left blank are worth 0 points. When you

finish this exam, double check that you have bubbled in your

UCFID and Exam Version on the scantron and then hand in

the scantron ONLY.

Consider storing a string in a linked list where each node stores a single character. The following

code implements functions similar to strlen and strcmp, as well as a function to convert a regular

string to its equivalent linked list representation. Several lines of the implementation have been

omitted. Questions 1 - 6 will be about these missing lines.

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

typedef struct chType {

 char c;

 struct chType* next;

} chType;

chType* convert(char* word);

int len(chType* word);

int compare(chType* left, chType* right);

chType* convert(char* word) {

 chType* front = NULL;

 int i;

 for (i=strlen(word)-1; i>=0; i--) {

 chType* tmp = malloc(sizeof(chType));

 tmp->c = word[i];

 tmp->next = /*** Q1 ***/;

 front = /*** Q2 ***/;

 }

 return front;

}

int len(chType* word) {

 if (word == NULL)

 return 0;

 return /*** Q3 ***/;

}

int compare(chType* left, chType* right) {

 if (left == NULL && right == NULL)

 return /*** Q4 ***/;

 if (left == NULL)

 return -1;

 if (right == NULL)

 return 1;

 if (left->c != right->c)

 return /*** Q5 ***/;

 return /*** Q6 ***/;

}

1) What expression should replace /*** Q1 ***/?

a) front b) front->next c) tmp->next

 d) tmp e) None of the Above

2) What expression should replace /*** Q2 ***/?

a) front b) front->next c) tmp->next

 d) tmp e) None of the Above

3) What expression should replace /*** Q3 ***/?

a) len(word->next) b) 2*len(word->next) c) len(word) + 1

 d) len(word->next) + 1 e) None of the Above

4) What expression should replace /*** Q4 ***/?

a) -1 b) 0 c) 1 d) left->c - right->c e) None of the Above

5) What expression should replace /*** Q5 ***/?

a) -1 b) 0 c) 1 d) left->c - right->c e) None of the Above

6) What expression should replace /*** Q6 ***/?

a) -1 b) 0 c) 1 d) left->c - right->c e) None of the Above

7) Which of the following could represent the inorder traversal of a binary

search tree?

A) 9 7 3 6 8 15 12 99

B) 3 6 7 8 9 12 15 99

C) 99 12 15 9 8 7 6 3

D) All of the Above (A, B and C)

E) None of the Above

8) What is the run time of an insert inorder function on a sorted doubly

linked list of n integers?

A) O(1) B) O(lg n) C) O(n) D) O(2n) E) None of the Above

9) How many structurally different binary search trees can be created which

have three nodes, storing the values 1, 2 and 3?

A) 1 B) 2 C) 3 D) 4 E) None of the Above

The following code implements an insert function for a binary search tree of integers, where the

height of each node is stored (distance from node to furthest leaf node in its subtree). Several

lines of the implementation have been omitted. Questions 10 - 15 will be about these missing

lines.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

typedef struct bintreenode {

 int data;

 int height;

 struct bintreenode* left;

 struct bintreenode* right;

} bintreenode;

bintreenode* insert(bintreenode* root, int value);

void preorder(bintreenode* root);

void freeTree(bintreenode* root);

bintreenode* insert(bintreenode* root, int value) {

 if (root == NULL) {

 bintreenode* tmp = /*** Q10 ***/;

 tmp->data = value;

 tmp->left = NULL;

 tmp->right = NULL;

 tmp->height = /*** Q11 ***/;

 return tmp;

 }

 if (value <= root->data) {

 root->left = insert(root->left, value);

 if (/*** Q12 ***/ >= root->height)

 root->height = /*** Q13 ***/;

 }

 else {

 root->right = insert(root->right, value);

 if (/*** Q14 ***/ >= root->height)

 root->height = /*** Q15 ***/;

 }

 return root;

}

10) What expression should replace /*** Q10 ***/?

a) root b) malloc(sizeof(bintreenode*)) c) malloc(4)

 d) new bintreenode() e) None of the Above

11) What expression should replace /*** Q11 ***/?

a) -1 b) 0 c) 1 d) root->height e) None of the Above

12) What expression should replace /*** Q12 ***/?

a) 0 b) root->height c) root->left->height

 d) root->right->height e) None of the Above

13) What expression should replace /*** Q13 ***/?

a) root->left->height b) root->right->height c) root->left->height + 1

 d) root->right->height+1 e) None of the Above

14) What expression should replace /*** Q14 ***/?

a) 0 b) root->height c) root->left->height

 d) root->right->height e) None of the Above

15) What expression should replace /*** Q15 ***/?

a) root->left->height b) root->right->height c) root->left->height + 1

 d) root->right->height+1 e) None of the Above

16) What is the value of the following postfix expression?

 3 4 5 + * 3 - 1 1 + 2 * /

a) 2 b) 3 c) 4 d) 5 e) None of the Above

17) What is the value of the following postfix expression?

 6 3 / 2 2 + * -

a) -2 b) 2 c) 24 d) Invalid Postfix Expression e) None of the Above

18) Let the sequence A of operations on a stack involve 3 pushes followed by

2 pops. Consider repeating the sequence A 20 times. If the stack was

implemented using an array, what is the minimum size of the array necessary

to ensure that these instructions are executed properly?

a) 20 b) 21 c) 22 d) 23 e) None of the Above

19) Which of the following class examples roughly implemented a linked list

of linked lists?

A) binary tree B) stack C) queue D) Books E) Artists+CDs

Questions 20-22 involve converting the following infix expression to postfix

using a stack of operators and parentheses:

(3 + 7) * ((1 + 8) - 2 * (16 / (4 - 2) - 5)) - 26

20) Right before the value 16 gets inserted into the expression, how many

items are on the stack of operators and parentheses?

a) 3 b) 4 c) 5 d) 6 e) None of the Above

21) When the last close parenthesis gets processed, how many items are popped

off the stack of operators and parentheses?

a) 3 b) 4 c) 5 d) 6 e) None of the Above

22) Which of the following is the equivalent postfix expression to the infix

expression given above?

a) 3 7 + 1 8 + 2 16 4 2 - 5 / - * - 26 * -

b) 3 7 1 8 + + 2 16 4 2 - / 5 - * - 26 * -

c) 3 7 1 8 + + 2 16 4 2 - / 5 - * - * 26 -

d) 3 7 + 1 8 + 2 16 4 2 - / 5 - * - 26 * -

e) None of the Above

23) In class we implemented a queue using a linked list and one using an

array. We tested both implementations with successive enqueues until the

enqueue failed. The array implementation failed with fewer elements in the

queue than the linked list version. What was our hypothesis as to why?

A) Arrays are stored inefficiently in C, compared to linked list and a single

array slot takes up twice the space of the corresponding linked list node.

B) I had different programs running on my computer in the background during

the two separate program runs. The programs running on my computer while I

ran the array code just happened to be using more memory.

C) I ran the linked list version with a special command line flag that

specified a larger allocation of memory for the execution of the program.

D) We were doubling our array size when it filled up so even though our code

failed to find enough room for the doubling, there would have been room for

quite a few more than one extra element. With the linked list implementation,

we only added one node at a time. It only failed after nearly all the

available memory was filled.

E) None of the Above

24) A short video was shown in class to introduce the breadth first search.

What was the video about?

A) Trees B) Corn Mazes C) Shopping Lines

 D) Rubix Cubes E) None of the Above

25) Where do seahorses live?

A) the sea B) mountaintops C) mars D) 7-11s E) igloos

