Honors Computer Science I – Exam #1

Date: 1/31/2013
Name: _________________________________

1) (10 pts) Write a function that takes in a positive integer n and returns a pointer to a random string consisting of n characters from the set {'A', 'C', 'G', 'T'}. Don't forget to NULL terminate the string. The function prototype is given below. You may assume that the random number generator has been seeded.

char* getRandomDNA(int n) {

}
2) (10 pts) What is the return value of the function call f(36785), using the function f defined below? (Note: Please show your work so partial credit can be awarded for incorrect answers.)
int f(int n) {

 if (n < 10) return n;

 if (n%2 == 0)

 return n%10 + 2*f(n/10);

 else

 return n%10 + f(n/10);

}

3) (12 pts) In the first assignment, many of you forgot to resize the array within the struct you returned. For this question, imagine that you just have temporarily stored a big integer that potentially has leading zeros stored in its array. Write a function that takes in a pointer to a struct integer and properly resizes the array within the struct.

struct integer {

 int* digits;
 int size;

};

// Pre-condition: ptrBigInt->size stores the current number

// of integers allocated to ptrBigInt->digits.

// Post-condition: ptrBigInt->size is reset to the number of

// digits stored in the struct without leading

// zeros and ptrBigInt->digits is resized

// accordingly.
void resize(struct integer* ptrBigInt) {

}

4) (8 pts) Write a function that takes in a pointer to a linked list and returns its length. The struct storing a node of the linked list and the function prototype are provided below:

struct node {

 int value;

 struct node* next;

};

int length(struct node* front) {

}

5) (20 pts) A subsequence in a list of numbers is simply a subset of the values in the list, in the same order as they appear in the list, relatively. For example, the list 2, 6, 3, 1, 8, 7, 9 has the subsequence 2, 3, 7 and 9. (Note that the values chosen do NOT need to be contiguous.) Write a recursive function that takes in an array, an integer n, an integer k , and an integer max, and returns the number of sorted subsequences with k values with the maximum value max out of the first n values in the input array. For example, in the array above of length 7, there are 4 subsequences of length 4 with values less than or equal to 9 ([2,3,7,9], [2,3,8,9], [2,6,7,9] and [2,6,8,9]), and there are 10 subsequences of length 2 with values less than or equal to 8. ([2,6], [2,3], [2,8], [2,7], [6,8], [6,7], [3,8], [3,7], [1,8] and [1,7] .) Do not worry about any overflow issues. You may assume that n ≥ 0 and k ≥ 0.
int numSortedSubSeq(int* array, int n, int k, int max) {

}
6) (12 pts) Consider executing the function call ListPermutations("COMP"). List the order that the 24 output strings get printed. The function is given below:

void ListPermutations(char str[]) {

 RecursivePermute(str, 0);

}

void RecursivePermute(char str[], int k) {

 int j;

 if (k == strlen(str))

 printf("%s\n", str);

 else {

 for (j=k; j<strlen(str); j++) {

 ExchangeCharacters(str, k, j);

 RecursivePermute(str, k+1);

 ExchangeCharacters(str, j, k);

 }

 }

}

void ExchangeCharacters(char str[], int i, int j) {

 char temp = str[i];

 str[i] = str[j];

 str[j] = temp;

}

1. ___________
7. ___________
13. ___________
19. ___________

2. ___________
8. ___________
14. ___________
20. ___________

3. ___________
9. ___________
15. ___________
21. ___________

4. ___________
10. ___________
16. ___________
22. ___________

5. ___________
11. ___________
17. ___________
23. ___________

6. ___________
12. ___________
18. ___________
24. ___________

7) (10 pts) Write a function that takes in a pointer to the front of a linked list and an integer threshold and returns the number of values in the linked list greater than threshold.

int countBigger(struct node* front, int threshold) {

}

8) (16 pts) Write a function that takes in a two dimensional integer array of size 50 x 50, and integers x and y that indicates all the square that are reachable from (x,y) in the grid. All entries in the integer array will equal either 1, 2 or 3. The value 1 indicates a square that hasn't yet been explored, a value of 2 indicates a blocked square where travel is not allowed and a 3 indicates a marked/visited square that is reachable from the original input square x,y. From a square labeled 1, you may travel either up, down, left or right to any square with a 1. Once a square has been "reached", it should be changed to store 3. For example, in the case that the input array is size 5 x 5 storing the values shown below with the initial values of x = 0 and y = 0:
1 2 2 1 1

1 1 1 1 2

2 2 1 2 1

1 2 1 2 1

1 2 1 2 1
The state of the array at the end of the set or recursive function calls should be:

3 2 2 3 3

3 3 3 3 2

2 2 3 2 1

1 2 3 2 1

1 2 3 2 1

Complete the recursive function call below:

#define SIZE 50

void fill(int grid[][SIZE], int x, int y) {

}
9) (2 pts) What type of bird is the Baltimore Ravens mascot Poe? ______________

Scratch Page – Please clearly mark any work on this page you would like graded.
