Fall 2015 Computer Science I Section 2 Exam #1 September 24, 2015

Last Name: _______, First Name: ______

1) (20 pts) A class has *n* students, s_1 through s_n . Student s_i has taken t_i tests, each scored from 0 to 100. This data is entered via standard input using the following format:

First line stores the number of students, *n*.

The next n lines store the student data with the ith of these lines storing the test information for student s_i.

Each of these lines starts with the integer, t_i , the number of tests taken by student s_i . This is followed by the t_i test scores for that student, in order.

Here is a small sample file for 3 students who've taken 5, 2 and 9 tests, respectively:

3 5 100 90 95 99 100 2 85 86 9 83 88 85 85 89 96 75 83 95

Complete the function below so that reads in this information from standard input and returns an array of arrays (the first array has length t_1 , the second array has length t_2 , etc.). Note since all of the required information is in the input, no parameters are needed for the function.

```
int** getTestData() {
```

2) (6 pts) Using the calloc function, write a single line of code to allocate room for n variables of type struct item. Assume that n is defined as an integer and stores a reasonable positive value and that the type struct item is declared. Name the array myitems.

3) (10 pts) A algorithm that sorts n items runs in $O(n\sqrt{n})$. When run on an input of 10,000 items, the algorithm takes 200 milliseconds. How long, in seconds, will the algorithm take when run on an input of 90,000 items?

^{4) (12} pts) We define a set of strings s_1 , s_2 , ... as follows: $s_1 = "1"$ and to form s_{i+1} we stick together two copies of s_i next to each other followed by the character i+1. For example, $s_2 = 112$ and $s_3 = 1121123$. Write a function that takes in n (guaranteed to be in between 1 and 9, inclusive) and prints out s_n .

void printSequence(int n) {

5) (10 pts) Determine a closed form solution for the following summation, in terms of n:

$$\sum_{i=n}^{2n-1} (4i+7)$$

6) (10 pts) Determine the run-time, in terms of the formal parameter n, of the following function. Leave your answer in a Big-Oh bound and justify your answer.

```
int f(int array[], int n) {
    int i, total = 0;
    for (i=0; i<n; i++) {
        int low = 0, high = n-1;
        while (low < high) {
            int mid = (low+high)/2;
            if (2*array[i] < array[mid])
                high = mid-1;
            else
                low = mid+1;
        }
        total += low;
    }
    return total;
}</pre>
```

7) (15 pts) Consider the following recursive function:

```
int compute(int array[], int low, int high) {
    if (low == high) return array[low]%3 + 1;
    int mid = (low+high)/2;
    int left = compute(array, low, mid);
    int right = compute(array, mid+1, high);
    return left*right;
}
```

Consider the function call compute (array, 0, 6) where array is shown below:

index	0	1	2	3	4	5	6
array	17	4	19	30	47	999	13

Determine the result of this recursive call, as well as each other recursive call that gets made as a result of this original one and its return value. Please fill in the recursive calls in the order that they *start*. (Note: This order is different than the order in which they finish and a significant hint has been given to you below.)

Recursive Call			Return Value
compute(array,	0,6)		
compute(array,	0,)	
compute(array,	0,)	
compute(array,	0,)	
compute(array,	1,)	
compute(array,	2,)	
compute(array,	2,)	
compute(array,	3,)	
compute(array,	4,)	
compute(array,	4,)	
compute(array,	4,)	
compute(array,	5,)	
compute(array,	6,)	

8) (15 pts) Complete the program below so that it prints out all the permutations of 0,1,2, ...,SIZE-1 such that the absolute value of the difference between each pair of adjacent numbers in the permutations is 2 or greater. For example, when SIZE = 4, the code would print out:

1 3 0 2 2 0 3 1

the only 2 permutations such that the absolute value of the difference between each pair of adjacent terms is 2 or greater.

```
#include <stdio.h>
#include <math.h>
#define SIZE 4
void printPerms(int perm[], int used[], int k, int n);
void print(int perm[], int n) ;
int main() {
   int perm[SIZE], used[SIZE], i;
   for (i=0; i<SIZE; i++) used[i] = 0;</pre>
   printPerms(perm, used, 0, SIZE);
   return 0;
}
void printPerms(int perm[], int used[], int k, int n) {
   if ( ) print(perm, n);
   int i;
   for (i=0; i<n; i++) {</pre>
       if (!used[i]) {
          if ( || ) {
              used[i] = ____;
              perm[k] = ____;
              printPerms(_____, ____, ____, ____);
              used[i] = ;
          }
       }
   }
}
```

9) (2 pts) Nate Silver famously predicted the outcome of every state in the last presidential election. With what precious metal does he share his last name?

Scratch Page - Please clearly label any work on this page you would like graded.