
2015 Fall Computer Science I Program #2: Word Search

Please consult Webcourse for the due date/time

A common game in newspapers is a word search. You are given a grid of letters and must find

words that appear in the grid. If you can choose the starting letter of the word within the grid,

and then go in one of the 8 possible directions (up, diagonal up and right, right, diagonal down

and right, down, diagonal down and left, left, diagonal up and left) and spell out the word exactly

as you go by each letter, then the word is in the grid. Here is an example of a partially solved

word search:

In a typical word search, you are given a list of words, each of which can be found in the grid. In

this example, we can see that the word "TWIZZLERS" appears starting in the last row and first

column, going along the up and left diagonal. We can find "PAYDAY" starting on the 5th row

and 6th column, going left.

Obviously, solving a word search is very time consuming. You've decided to use your

programming skills to very quickly solve word searches so that you can impress your friends

with your "vision"!

Programming Tip: DX and DY arrays

In many programming applications, one must start in some location on a two dimensional grid

and then they must move in one of several directions. In terms of coding, it would be nice if one

could simply "loop" through each of the possible directions in a seamless manner. The best way

to do this is to define constants that store each of the possible directions of movement. For this

program, these constants look like the following:

const int DX_SIZE = 8;

const int DX[] = {-1,-1,-1,0,0,1,1,1};

const int DY[] = {-1,0,1,-1,1,-1,0,1};

These should be defined before main, where constants are typically defined.

Now, if we are currently at a spot (x,y), we can move to each of the adjacent locations as

follows:

for (i=0; i<DX_SIZE; i++) {

 int nextX = x + DX[i];

 int nextY = y + DY[i];

 // (nextx, nexty) represents the adjacent location in

 // direction i.

}

For this assignment adjustments will have to be made to this framework, but the overarching idea

is very, very useful as it avoids an if statement with 8 branches which is very, very error prone.

In this framework, the logic has to be written once and the DX and DY arrays have to be double

checked, that's it!

Dictionary Information and Binary Search

Before the program processes any word search grids, your program should load in the dictionary

from the file, dictionary.txt. The first line of this file will have a single positive integer, n,

representing the number of words in the dictionary. The words follow on the next n lines, one

word per line. Each word will only contain lowercase letters and be in between 4 and 19 letters

long, inclusive.

It is recommended that you use a binary search to see if a particular string is in the dictionary. If

you use a linear search, your program will not earn full credit.

The Problem

Given an input dictionary read in from a file to use for all test cases, and several word search

grids, identify all words from the dictionary that appear in each word search grid.

The Input (of word search grids, to be read in from standard input)

The first line of the input file will contain a single positive integer, c (c ≤ 100), representing the

number of input cases. The input cases follow, one per line. The first line of each input case will

contain two positive integers, r (4 ≤ r ≤ 300), and c (4 ≤ c ≤ 300), representing the number of

rows and columns, respectively, in the word search grid. The following r lines will contain

strings of exactly c characters, all of which will be lowercase letters for each row of the word

search grid for that input case.

The Output

For each case, output a header with the following format:

Words Found Grid #k:

where k is the grid number starting with 1. (Please pay attention to the capitalization above,

the pound sign and the colon. You will lose a small amount of credit if you don't use this

exact format.)

Output all the words from the dictionary found in the grid on the following lines, one per line.

You may output these in any order and you may output the same word more than once, but you

should not output any string that isn't in the dictionary, or output any valid word that does

not appear anywhere in the grid. I will assign a small amount of extra credit if you can only

output each valid word once and another little bit of extra credit if you output these words in

alphabetical order. You can only get the extra credit if your solution is 100% correct.

Sample Input Sample Output (using posted dicationary.txt)
2 Words Found Grid #1:

4 4 trap

syrt part

gtrp cats

faaq Words Found Grid #2:

pmrc swing

5 6 wing

swingh letter

abcdef

rettel

ayzgfd

cmtydh

Specification Details

You must use dynamic memory allocation to store the input dictionary and each individual word

search grid. You must free your memory appropriately. You must read the input dictionary from

the file dictionary.txt, which will be posted online.

Deliverables

Please turn in a single source file, wordsearch.c, with your solution to this problem via

Webcourses before the due date/time for the assignment. Make sure that your program reads the

puzzles from standard in and outputs all information to standard out, as previously shown in lab.

Note that the dictionary will be read in from a file.

