Computer Science I

Program 6: Hash Table
Assigned: 4/6/09 (Monday)

Due: 4/17/09 (Friday 11:55pm over WebCourses)

The Problem

You will implement a hash table to store a dictionary of words and then answer some queries about the words stored in the hash table and the hash table itself. You are required to implement the linear chaining hashing technique, which stores an array of linked lists. Each linked list node should simply store a string (no longer than 29 characters) and a pointer to another node. The size of the array will be specified in the input file, thus, the array needs to be dynamically allocated.
Hash Function

The hash function to be used for this assignment is as follows:

f(cn-1cn-2…c1c0) = [ascii(cn-1)x128n-1 + ascii(cn-2)x128n-2 + … + ascii(c1)x128 + ascii(c0)] % tablesize.

The tablesize to use will be provided in the input file. Make sure to avoid overflows, as mentioned in class.
Input File #1 Specification (dictionary.txt)

The input file has a single positive integer, n, on its first line, specifying the words in the dictionary. (This value of n will represent the size of the hash table.) The next n lines will contain one word each. Each word will contain valid ascii characters w/o any whitespace with fewer than 30 characters. (Thus, words may contain non-letter characters such as digits or punctuation. In the example given later, 10000 is used as a word in the dictionary.)
Input File #2 Specification (query.txt)
There are two types of queries specified in the file:

1) Whether or not a word is stored in the hash table. (And if it is, where it is stored.)

2) The number of words in the hash table stored at the same index as a particular word would be stored.
The first line of this input file will contain the number of queries, q, in the file. The next q lines will contain one query each. Each query starts with a single number (either 1 or 2), specifying the type of query as noted above. This is followed by a space and a string to query.

For a query of type #2, first calculate the hash value of the given word. Then determine the number of words stored in the hash table at that index. It may be the case that the given word isn’t stored in the hash table at all.
Output Specification

For each query print out the following header:
Query #c:

where c represents the query number (1 ≤ c ≤ q).

For a query of type #1, if the word is IN the hash table, follow this header with a line with the following format:
word was found in index X.

where word is the queried word and X is the index in the hash table where the word was found.

If the word is NOT in the hash table, write the following instead:

word was NOT found in the hash table.
where word is the queried word.

For a query of type #2, determine the hash value of the queried word and then simply determine the length of the linked list at this index in the hash table and print this out as follows:

There are Z words stored at index X.

where Z is the number of words in question and X is the hash value of the queried word.

Separate the output for each query with a blank line.
Implementation Restrictions

You must implement the hash table as an array of linked lists. This array must be dynamically allocated, which means that the original variable needs to be declared as a double pointer. Each linked list node must store a string and a pointer (to another linked list node). You may create a struct that encapsulates the hash table, but this isn’t a requirement. (Namely, you may just create a struct to store one node of a linked list and in your main declare an array of pointers to these structs, or you can create one struct to store a linked list node and a second struct to store the whole hash table.)
Sample Input File #1 (dictionary.txt)
11
10000

apple

bag

cane

dog

elephant

fox

game

hand

ivory

jackolantern

Sample Input File #2 (query.txt)
4

1 hand

2 10000

1 bags

2 100000

Sample Output 
Query #1: hand was found in index 1.
Query #2: There are 1 words stored at index 9.

Query #3: bags was NOT found in the hash table.

Query #4: There are 2 words stored at index 1.

Deliverables

Turn in a single file, hashtable.c, over WebCourses that solves the specified problem. Make sure to include ample comments and use good programming style, on top of the requirements that are given in the program description above. 
