Computer Science I - Program 2

Part I: Parking at UCF

Part II: Square Root Chart

Assigned: 9/12/01

Due: 9/26/01 (in lecture)

Part I: The Problem

All students are familiar with parking woes at UCF. A nice piece of information to have would be the expected waiting times for a parking spot at each hour of the day. We have written a function that will help you calculate the expected wait time in minutes for a parking spot during a particular time of day. Your job is to print out a bar graph of the average parking spot wait times for each hour of the day, using that function.

The given function

You will need to use a function that we(the CS1 staff) have written for you. In particular, the amount of time it takes to find a parking spot is dependent on the time of day you are trying to find a parking spot. We have provided the following function. It will be posted on the web later this week. You should simply cut and paste this function into your program file.

// Preconditions: the input parameter represents the number of minutes past midnight.

// Postconditions: the number of minutes to find a parking spot at the time specified

// by the input parameter will be returned

int Time_Park(int minutes)

Bar Graph Format

You should have two columns in your graph, one for the hour of the day, and the other for the corresponding waiting time. Please label the hours from 0 to 23, where 0 is midnight, 12 is noon, and 23 stands for 11pm. One '*' in the minutes column should count for 5 minutes. (If the number of minutes to wait is not divisible by 5, simply draw the greatest number of whole number stars less than or equal to what would represent the actual waiting time. For example, if the waiting time at 8 am is 9 minutes, you should only draw 1 star.

hour
minutes

----- ----------

0
*

1
**

2

3

...

23
*

Some Assumptions

Assume that function we have written conform to the specifications given. Assume that the values they return are non-negative integers that represent reasonable information. (They won't say you have to wait 2400 minutes to park

Algorithm Design (Due 9/19 is recitation)
1. Variables: Make a list of the variables you expect to use in your main function. List their type as well as what data value they are supposed to store. (e.g. variable laps: type - int; stores the number of laps in the race.)

2. Sketch out the layout of your main function. This sketch does not have to be in C, but it should show the general structure of where loops are in main, as well as calls to other functions.

Part II: The Problem

Your goal is to print out a table of square roots - without using the square root function. Your program should prompt the user what integer value to start the table and what value to end the table. If they enter invalid numbers (either negative values or a starting value greater than an ending value), ask them to reenter their choices. Once you have these three pieces of information, you should use an iterative method to compute each square root on the chart and print this information out.

The Iterative Square Root Computation Method

Here is an algorithm to compute the square root of a given number n:

1) Guess that the square root is 1.

2) Compute n - guess*guess. If the absolute value of this is less than 0.000001, then

 your guess is close enough to the actual square root. Return this value as your

 answer.

3) If the guess in step two wasn't good enough, calculate a new guess as follows:

 new guess = (old guess + n/(old guess))/2.

 Now, repeat step #2, using this new guess for the square root.

The basic idea here is that you make successive guesses to the square root of n. Because of the way the formula in step 3 is designed, each guess you make gets you closer to the actual answer. When you are "close enough", you can simply use that answer.

Output Format

The output should be a chart. For example, if the user enters 2 as the lower bound and 20 as the upper bound, your chart should look like the following:

Number
Square Root

2

1.414214

3

1.732051

4

2.000000

5

2.236068

6

2.449490

7

2.645751

8

2.828427

9

3.000000

10

3.162278

11

3.316625

12

3.464102

13

3.605551

14

3.741657

15

3.872983

16

4.000000

17

4.123106

18

4.242641

19

4.358899

20

4.472136

Note that these are the actual correct values of the square roots to 6 decimal places. Using the algorithm given above, it is possible that the values you get won't be accurate to as many decimal places.

Algorithm Design (Due 9/19 is recitation)
1. Functions: Make a list of the functions you expect to write. What are the input parameters as well as the return value types for each of your functions? What are the variables you expect to use in each function.

2. Variables: Make a list of the variables you expect to use in your main function. List their type as well as what data value they are supposed to store. (e.g. variable laps: type - int; stores the number of laps in the race.)

3. Sketch out the layout of your main function. This sketch does not have to be in C, but it should show the general structure of where loops are in main, as well as calls to other functions.

Testing Design (Due 9/19 is recitation)

Describe how you plan on testing your program. Are you going to write one function and test that? How are you going to test your program once it is completely written? Describe the data for at least a couple test runs of the complete program. Explain how these two examples test different aspects of your program. Convince the grader that if your program "passes" these tests that the program works in most cases.

Coding & Debugging Process

Using your design, start coding your program. As mentioned in the design process, rather than trying to get the whole thing to run at once, attempt to code up a subtask. After doing so, test this subtask. After you are confident that this works properly, move on by adding more functionality to your program. This is called incremental development. You develop your program piece by piece, testing & debugging each piece as you go along. Document the changes you have to make while debugging. Why did you have to make these changes? When you are finally done developing your program, you must test the entire application. Run all the test cases you outlined in your testing design. If necessary, continue debugging. What problems did you run into at this stage? Why? Are there other test cases you feel are necessary to run that you did not list beforehand? What are these test cases? Why are you adding them? Did they work also?

What to turn in

In recitation on Sept. 19th, you must turn in your algorithm design and testing design. (Note that no testing design is necessary for part I.) These should be typed and have your name and date on them. During the quiz, your TA will glance through these. They will alert you if they feel your design is inadequate. (They will keep these to grade with your program when you turn it in.) Keep an electronic copy of your design to help you while you work on your program.

In lecture on Sept. 26th, you must turn in a hard-copy of your code, which should be fully commented. You must also submit a write-up of your coding and debugging process, for both parts, answering all the questions posed in the section above. Finally, you will need to submit an electronic copy of your source code.

