Computer Science I

Program 4: Post-fix Evaluator

Assigned: 6/20/08 (Friday)

Due: 7/2/08 (Wednesday 11:55pm over WebCT)

PostfixA Program Evaluator

You will write a program that evaluates a program written in a language called PostfixA. PostfixA is a fairly simple language that only allows assignment statements and integer arithmetic. Your program asks the user for a file containing a PostfixA program. If the file contains a syntactically valid PostfixA program, then your program should output to the screen the value of each variable. If not, then an error message should be printed to the screen simply stating that the program is NOT a valid PostfixA program.

PostfixA syntax

All valid statements in PostfixA are of the form:

= <var> <postfix expr>

and must appear on a single line. (Also, each line of a PostfixA program MUST contain exactly ONE statement.)

The first token of a valid PostfixA statement must be an equal sign and the second must be a variable. Here are the rules for valid variables:

1) Must start with a uppercase letter, but NOT the letter L.

2) Can only contain uppercase letters.

3) Must be in between one and eight characters long, inclusive.

4) At most 5 distinct variables can appear in a PostfixA program.

The rest of tokens in a valid PostfixA statement must form a valid postfix expression. In PostfixA, the only valid operators are: +, -, *, /, %. All operations are integer operations as performed in C. All valid operands are either variables or integer literals. All variables initially evaluate to 0 until they are assigned to a different value. All integer literals are strings of the form L####, where the first character is an uppercase L, and the rest of the following characters form an integer. The first character for a negative integer is a minus sign(-). For example, -13 is expressed as L-13 in PostfixA while 7982 is represented as L7982 in PostfixA. The postfix expressions themselves must conform to the standard rules.
PostfixA Program File Format

A file containing a PostfixA program should not contain anything but the PostfixA program, with exactly one statement per line. All PostfixA programs should be stored in files with a .pfa extension. Here is an example of a valid PostfixA program:

= X L3 L4 L5 * -

= Y L12 W X + -

= Z Y Z * L3 +

Output Format

If the file entered by the user is not a valid PostfixA program (syntactically) then your program should print the following message to the screen:

The file ***** does not contain a valid PostfixA program.

(***** represents the file containing the program in question.)

If the file is valid, and contains no illegal arithmetic operations, then the value of each variable appearing in the text of the program should be printed out to screen, with one variable per line. In particular, the value of the variable AT THE END OF THE PROGRAM is the only value that should be printed for each variable. Here is an example of appropriate output for the PostfixA program given above:

X -17

W 0

Y 29

Z 3

There is no stipulation on the order of the variables. Only each variable in the program must appear exactly once in the listing of values. Note that the values on the right hand side of the output are written as normal integers, and NOT in PostfixA syntax!!!

Finally, if an illegal arithmetic operation occurs, such as a divide by zero (which can occur with either / or %), then print the following message to the screen:

The file ***** produces a division-by-zero error when executed.

Sample Run
Please enter the name of the PostfixA input file:

test.pfa

X -17

W 0

Y 29

Z 3

Thank you for using the PostfixA compiler!

Implementation Requirements

You must create functions that implement a stack of integers to help evaluate postfix expressions. Your program must work with files as specified above. Your program should give a single prompt to the user to enter a file name. There is no need to check to see whether the file name is valid. The TA will only test your code with files that exist. (But your code should be able to detect invalid .pfa files.) You may assume that each token within a line is separated with a space or tab.
Deliverables

Turn in your solution to this problem in a file called postfixeval.c. If you solve the problem with a program that utilizes multiple files, then make sure that the file postfixeval.c is the file that contains main. Turn in each file separately (don't zip them up). If you decide to make any enhancements to this program, clearly specify them in your header comment so the grader can test your program accordingly.

