Honors CS1 Homework #3

Assigned: 10/4/00

Due: 10/16/00

Problem #1
Write a program that implements addition, subtraction and multiplication of polynomials with integer coefficients (mod x10). First let me provide the mathematical background for this question:

A standard polynomial f(x) has the form cnxn + cn-1xn-1 + ... + c1x + c0, where ci is a constant for 0 (i (n. However, when we are dealing with polynomials (mod xm), each term is equivalent to a term of the form xr, where 0 (r < m. Namely, we always have

xn = xr (mod xm), if (n – r) mod m = 0, and 0 (r < m.

We will only deal with terms with non-negative exponents. So, for example, we can say

5x4 + 3x3 + x2 - 6x + 4 = -3x + 10 (mod x2).

Your program should ask the user to enter two polynomials (mod x10). You may read these in from the user in any way you see fit. Afterwards, your program should ask the user whether they want to add the two polynomials, subtract the second from the first, or multiply the two polynomials. Your program should output the answer of their operation in a readable format. Here is an example of a polynomial in a readable format:

4x^5 + 0x^4 + 2x^3 + 1x^2 – 6x^1 + 7x^0.

For a some extra credit, you may make the following enhancements to printing out your answer:

1) Do not print terms where the coefficient is 0.

2) Do not print the 1 for terms where the coefficient is 1.

3) Do not print the ^1 for the x term

4) Do not print the x^0 for the constant term.

Clearly addition and subtraction are much easier than multiplication. Tackle these two operations first. When you multiply, make sure you multiply each possible combination of terms together to get the true product. In the process, make sure you do you “mod” immediately, term by term.
Problem #2
Cut and paste the version of minesweeper that I have posted on the class web page into a file. Compile, run the program, and get a feel for how it works. Now, I want you to implement a recursive clearing of the board. In particular, if the user happens to uncover a square with 0 bombs adjacent to it, each of the covered adjacent squares should also be uncovered. If any of those squares have 0 adjacent bombs, repeat the process. The process gets repeated until no square with a 0 gets cleared. (Hint: DO NOT TRY TO WRITE THIS ITERATIVELY!!! Rather, turn domove into a recursive function. If you think about this the right way, you shouldn’t have to add more than 5 to 10 lines of code.)

