
2013 Fall Computer Science I Program #2: Possible Passwords

Please consult Webcourse for the due date/time

After learning recursion, you’ve decided to look for some applications of the new problem

solving technique you’ve learned. It turns out that there’s an escalating rivalry between a couple

student clubs on campus, “Unkempt Freshmen” and “Frustrated Student Underlings”. The SGA

at UCF suspects that both clubs are up to some fairly nefarious activities. In order to check up on

the clubs, your boss has asked you to write a program that can guess passwords for the email

accounts of each club. Luckily, after gathering some data, you know exactly how long each

password is and what the possible letters are for each slot. As an example, it’s possible you

might have narrowed down a particular password to be three letters long where the first letter is

from the set {‘a’, ‘b’, ‘c’}, the second letter is from the set {‘x’, ‘y’} and the third letter is from

the set {‘d’, ‘m’, ‘n’, ‘r’}. From this data, there are 24 possible passwords. You will have to

write a program that can iterate through each possible password, in alphabetical order. Since

printing out each of the passwords might create unnecessarily long output, to check to see that

your program works, you’ll only be asked to output specific ranked possible passwords from the

list, instead of the whole list itself.

The Problem

Given the length of a password, a list of possible letters for each letter in the password, and a

desired alphabetical rank, determine the possible password of the given rank.

The Input

The first line of the input file will contain a single positive integer, c (c ≤ 100), representing the

number of input cases. The input cases follow, one per line. The first line of each input case will

contain a single positive integer, m(m ≤ 20), the length of the password. The following m lines

will contain strings of distinct lowercase letters in alphabetical order representing each of the

possible letters for each letter in the password. The i
th

 line in this set will store the possible letters

for the i
th

 letter in the password. The last line of each test case will contain a single positive

integer, r (r ≤ 1048576), representing the rank of the possible password to output. (You are also

guaranteed that the product of the lengths of these m lines won't exceed 1,000,000,000.)

The Output
For each case, output the correct possible password for the query, in all lowercase letters. It is

guaranteed that all queries will be for a valid ranked password.

Sample Input Sample Output
2 bxm

3 zz

abc

xy

dmnr

10

2

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

676

Specification Details

You must use recursion in order to get full credit on the assignment. (There is a very elegant

non-recursive solution, but I want you to practice recursion…) The standard recursive solution

would be to iterate through all the passwords in the desired order, stopping when you reach the

desired rank. This solution can earn you full credit. There’s a much faster solution which avoids

going through each possible password. If you discover this solution, you may earn some extra

credit. None of the TAs or I will give you ANY hint about this efficient solution. I want those

who earn the extra credit to truly do so.

Deliverables

Please turn in a single source file, passwords.c, with your solution to this problem via

Webcourses before the due date/time for the assignment. Make sure that your program reads

form standard in and outputs to standard out, as previously shown in lab.

