Computer Science I - Program 3

One-Dimensional Minesweeper

Assigned: 10/10/01

Due: 10/24/01

Minesweeper Rules

Many of you should already be familiar with minsweeper, which is included in most Windows systems. For those of you who have never played, here is an overview of the rules as they will apply to the 1-dimensional version of the game that you are going to implement:

1) The playing board consists of 20 adjacent cells, numbered from 1 to 20.

2) Some of these cells will randomly chosen to contain bombs.

3) Initially, all playiing cells are covered.

4) A player must attempt to uncover squares, one by one.

5) If the square stores a bomb, the player loses. Otherwise, a number should be revealed that indicates the number of bombs in adjacent squares.

6) IF that number is 0, then you should automatically recursively uncover all adjacent squares as well, that are not already cleared.

7) Play continues until the player has either chosen a bomb, or uncovered all squares that do not contain a bomb. If the latter occurs, the player wins.

This is a short explanation of the game, if you have questions about the details, (ie. what would happen in a particular situation) please ask either the TAs or the lecturers.

You will be given a function that takes care of filling an array of characters of size 20 with n bombs randomly.

The given function

You will need to use a function that we(the CS1 staff) have written for you. In particular, we will write a function that takes in an array of characters of size 20 and places 4 bombs, (denoted by the character '*') randomly into the array. In order to avoid confusion, the function will place underscores('_') into the other 16 cells of the array. Here is the prototype of the function:

// Preconditions: the first input parameter must be a character array of size 20 and the

// second must be a positive integer less than 20.

// Postconditions: the function will place numbombs '*' in random cells of the board, and

// place an underscore('_') in all other cells of the board.

void Place_Bombs(char board[], int numbombs);

Output specifications

You may alter your output to make it fancy in any way that you like, but your output must conform to these specifications:

1) In the beginning of the game, you prompt the user with a reasonable display of the covered board, with each board cell clearly labelled with its corresponding number from 1 to 20.

2) After the board is displayed, you must prompt the user for a square to uncover.

3) Your program should then reprompt the user with a new picture of the board showing its status after the player's move has been executed.

This pattern should persist until either the player uncovers a bomb, at which point an appropriate message should be printed to the screen and the game ended, or until the player wins. Another appropriate message should be printed to the screen in this situation.

Other issues

As mentioned in class, array out of bounds problems are extremely common and can do bad things to your program. Thus, be especially careful of these. In particular, make sure to error check the user's input. If they enter an invalid cell number and you access an array location based on that, you are likely to access an array out of bounds.

Whenever you uncover a square with no adjacent bombs, you must uncover it's adjacent squares and continue the process till none with zero bombs are left to clear. Although this can be done iteratively with a couple loops, for full-credit, you must implement this recursively.

Algorithm Design (Due 10/17 is recitation)
1. Functions: Make a list of each function you plan on making for this program. For each function give the prototype and state why you chose each of the formal parameters.

2. Sketch out the layout of your main function. This sketch does not have to be in C, but it should show the general structure of where loops are in main, as well as calls to other functions.

3. Make a list of any pertinent issues that your design has not yet addressed.

Coding & Debugging Process

Using your design, start coding your program. As mentioned in the design process, rather than trying to get the whole thing to run at once, attempt to code up a subtask. After doing so, test this subtask. After you are confident that this works properly, move on by adding more functionality to your program. This is called incremental development. You develop your program piece by piece, testing & debugging each piece as you go along. Document the changes you have to make while debugging. Why did you have to make these changes? When you are finally done developing your program, you must test the entire application. Run all the test cases you outlined in your testing design. If necessary, continue debugging. What problems did you run into at this stage? Why? Are there other test cases you feel are necessary to run that you did not list beforehand? What are these test cases? Why are you adding them? Did they work also?

What to turn in

In recitation on Oct. 17th, you must turn in your algorithm design. These should be typed and have your name and date on them. Keep an electronic copy of your design to help you while you work on your program.

In lecture on Oct. 24th, you must turn in a hard-copy of your code, which should be fully commented. You must also submit a write-up of your coding and debugging process, answering all the questions posed in the section above. Finally, you will need to submit an electronic copy of your source code.

