Honors Computer Science I

Program 3: BigIntegers

Assigned: 1/23/08 (Wednesday)

Due: 2/6/08 (Wednesday 11:55pm over WebCT)

The Problem

The unsigned int type in C requires 4 bytes of memory storage. With 4 bytes we can store integers as large as 232-1; but what if we need bigger integers, for example ones having hundreds of digits? If we want to do arithmetic with such very large numbers we cannot simply use the unsigned data type. One way of dealing with this is to use a different storage structure for integers, such as linked lists. If we represent an integer as a linked list, we can represent very large integers, where each digit is a node in the list. Since the integers are allowed to be as large as we like, linked lists will prevent the possibility of overflows in representation. However we need new functions to add, subtract, read and write these very large integers.

Write a program that will manipulate such arbitrarily large integers. Each integer should be represented as a linked list of digits. You are given a function that reads integers into a linked list. Your program should be able to print an integer and do addition or subtraction as required.

Your program should store each decimal digit (0-9) in a separate node of the linked list. In order to perform addition and subtraction more easily, it is better to store the digits in the list in the reverse order. For instance, the value 1234567890 might be stored as:

Your program should include the following functions:

· a function that will read in an integer from the keyboard

· a function that will print an integer that is stored as a linked list.

· a function that will add two integers represented as linked lists and returns a pointer to the resulting list.

· a function that compares two integers and returns -1 if the first is less than the second, 0 if they are equal, and 1 if the first is greater than the second.

· a function that will subtract one integer from the other and return a pointer to the resulting list. Since you’ll be dealing with positive integers only, the result should be a positive number. To ensure that the result is integer you should subtract the smaller number from the larger one. For this purpose you’re given a function that compares two large integers and returns –1, 0 or 1, depending on whether the first number is less than, equal to or greater than the second number.

Input/Output Specification

Your program should prompt the user with the following menu:
1) Add two big integers

2) Subtract to big integers

3) Quit

Continue prompting the user until they quit. If they choose an invalid option, ask them to enter a valid one and continue doing so until they do.

If either of the first two options is chosen, prompt the user with the following two questions?

What is the first number for your operation?

What is the second number for your operation?

Your output should fit one of the two following formats:

X + Y = Z

X – Y = Z

corresponding to which option was chosen. For the first option, always print the first number entered first. For the second option, always print the larger of the two numbers entered first.

You may assume that the user will always enter a big integer that adheres to the following rules:

1) Only contains digits

2) The leading digit is NOT zero.
3) The maximum number of digits any big integer entered will have is 50.

Implementation Restrictions

You must use the following struct:
struct integer{

int digit;

struct integer *next;

}

Whenever you store or return a big integer, always make sure not to return it with any leading zeros. Namely, make sure that the last node in the linked list returned does NOT store 0, unless the number stored is 0, in that case a single node should have 0 in it.

Here are the prototypes of the functions for you to write:
//Preconditions: the first parameter is string that stores
// only contains digits, doesn't start with

// 0, and is 50 or fewer characters long.
//Postconditions: The function will read the digits of the

//
large integer character by character,

//
convert them into integers and place them in

//
nodes of a linked list. The pointer to the //
head of the list is returned.
struct integer* read_integer(char* stringInt);

//Preconditions: p is a pointer to a big integer, stored in

// reverse order, least to most significant

// digit, with no leading zeros.
//Postconditions: The big integer pointed to by p is

// printed out.

void print(struct integer *p);

//Preconditions: p and q are pointers to big integers,

// stored in reverse order, least to most

// significant digit, with no leading zeros.
//Postconditions: A new big integer is created that stores

// the sum of the integers pointed to by p

// and q and a pointer to it is returned.

struct integer* add(struct integer *p, struct integer *q);

//Preconditions: p and q are pointers to big integers,

// stored in reverse order, least to most

// significant digit, with no leading zeros.
//Postconditions: A new big integer is created that stores

// the absolute value of the difference

// between the two and a pointer to this is

// returned.

struct integer* subtract(struct integer *p, struct integer *q);

//Preconditions: Both parameters of the function are

//
pointers to struct integer.

//Postconditions: The function compares the digits of two

//
numbers recursively and returns:

// -1 if the first number is smaller than the second,

// 0 if the first number is equal to the second number,

// 1 if the first number is greater than the second.

int compare(struct integer *p, struct integer *q);

Sample Run

Which of the following choices do you want?

1) Add two big integers

2) Subtract to big integers

3) Quit
1

What is the first number for your operation?

8888888888

What is the second number for your operation?

2222222222

8888888888 + 2222222222 = 11111111110
Which of the following choices do you want?

1) Add two big integers

2) Subtract to big integers

3) Quit
2

What is the first number for your operation?

9999999999
What is the second number for your operation?

10000000000
10000000000 – 9999999999 = 1

Which of the following choices do you want?

1) Add two big integers

2) Subtract to big integers

3) Quit
2

What is the first number for your operation?

10000000000

What is the second number for your operation?

9999999999
10000000000 – 9999999999 = 1

Which of the following choices do you want?

1) Add two big integers

2) Subtract to big integers

3) Quit
3

Thank you for using the big integer calculator!
Deliverables

Turn in a single file, bigintll.c, over WebCT that solves the specified problem. If you decide to make any enhancements to this program, clearly specify them in your header comment so the grader can test your program accordingly.
0

9

8

7

6

5

4

3

2

1

list head

