Computer Science I - Program 4

Simple arithmetic with very large integers

Assigned: 10/24/01

Due: 11/7/01

The problem

The unsigned int type in C requires 4 bytes of memory storage. With 4 bytes we can store integers as large as 232-1; but what if we need bigger integers, for example ones having hundreds of digits? If we want to do arithmetic with such very large numbers we cannot simply use the unsigned data type. One way of dealing with this is to use a different storage structure for integers, such as linked lists. If we represent an integer as a linked list, we can represent very large integers, where each digit is a node in the list. Since the integers are allowed to be as large as we like, linked lists will prevent the possibility of overflows in representation. However we need new functions to add, subtract, read and write these very large integers.

Write a program that will manipulate such arbitrarily large integers. Each integer should be represented as a linked list of digits. You are given a function that reads integers into a linked list. Your program should be able to print an integer and do addition or subtraction as required.

Your program should store each decimal digit (0-9) in a separate node of the linked list. In order to perform addition and subtraction more easily, it is better to store the digits in the list in the reverse order. For instance, the value 1234567890 might be stored as:

Your program should include the following functions:

· a function that will print an integer that is stored as a linked list.

· a function that will add two integers represented as linked lists and returns a pointer to the resulting list.

· a function that will subtract one integer from the other and return a pointer to the resulting list. Since you’ll be dealing with positive integers only, the result should be a positive number. To ensure that the result is integer you should subtract the smaller number from the larger one. For this purpose you’re given a function that compares two large integers and returns –1, 0 or 1, depending on whether the first number is less than, equal to or greater than the second number.

The given functions

You will use two functions that we have written for you. One of them will be used to read a large integer into a linked list. The other will be used to compare two large integers. Both functions use the following structure to represent integers:

struct integer{

int digit;

struct integer *next;

}

Here are the prototypes of the functions:

//Preconditions: the first parameter is a pointer to a

//
pointer variable that points to

//
struct integer. The function skips leading

//
blanks and assumes that no leading zeros are

//
entered at the input.

//Postconditions: The function will read the digits of the

//
large integer character by character,

//
convert them into integers and place them in

//
nodes of a linked list. The pointer to the //
head of the list is returned as the value of

//
the input parameter.

void read_integer(struct integer **np);

//Preconditions: Both parameters of the function are

//
pointers to struct integer.

//Postconditions: The function compares the digits of two

//
numbers recursively and returns:

// -1 if the first number is smaller than the second,

// 0 if the first number is equal to the second number,

// 1 if the first number is greater than the second.

int compare(struct integer *p, struct integer *q);

Output Specifications

A sample run of the program:

Enter the first number
:8888888888

Enter the second number
:2222222222

Enter the operation: +

The result is
:11111111110

Another run:

Enter the first number
:10000000000

Enter the second number
:9999999999

Enter the operation: -

The result is
:1

As you see from the sample run, the leading zeros are discarded in the result of subtraction.

Algorithm Design (Due 10/31)

1. Functions: Make a list of each function you plan on making for this program. For each function give the prototype and state why you chose each of the formal parameters.

2. Sketch out the layout of your main function.

3. Make a list of any pertinent issues that your design has not yet addressed.

Coding and Debugging Process

Using your design, start coding your program. As mentioned in the design process, rather than trying to get the whole thing to run at once, attempt to code up a subtask. After doing so, test this subtask. After you are confident that this works properly, move on by adding more functionality to your program. This is called incremental development. You develop your program piece by piece, testing & debugging each piece as you go along. Document the changes you have to make while debugging. Why did you have to make these changes? When you are finally done developing your program, you must test the entire application. Run all the test cases you outlined in your testing design. If necessary, continue debugging. What problems did you run into at this stage? Why? Are there other test cases you feel are necessary to run that you did not list beforehand? What are these test cases? Why are you adding them? Did they work also?

What to turn in

In recitation on October. 31st, you must turn in your algorithm design and testing design. These should be typed and have your name and date on them. Keep an electronic copy of your design to help you while you work on your program.

In lecture on Nov. 7th, you must turn in a hard-copy of your code, which should be fully commented. You must also submit a write-up of your coding and debugging process, answering all the questions posed in the section above. Finally, you will need to submit an electronic copy of your source code.

0

9

8

7

6

5

4

3

2

1

list head

