Honors Computer Science I
Program 2: Jumble
Assigned: 1/14/08 (Monday)

Due: 1/23/08 (Wednesday 11:55pm over WebCT)

The Problem

Lindsay plays the daily "Jumble" in the Orlando Slantinel. After she learns the permutation algorithm in her CS1 class, she gets a brilliant idea: she can write a computer program to solve the daily "Jumble"! Her idea is as follows:

For each set of letters, simply create each permutation of them and check each of these permutations against the dictionary. Whenever one is found that matches, output it!

Obviously, carrying this algorithm out by hand would be very tedious, but a computer program could easily solve the problem in very little time!

Write a program that solves "Jumble." First, your program will read in the dictionary from a file called "dictionary.in" (This file will be provided for you.) This file will contain English words in alphabetized order. (Thus, there is no need to sort these words, you can store them already sorted as you read them in.) You will then prompt the user for a jumbled word. Use the permutation algorithm to create all permutations of the jumbled word, and then use a binary search to search for each permutation in the dictionary. Your program should output (to the screen) all permutations of the jumbled word that appear in the dictionary. If no permutations form a valid word, simply display a message to that effect. Allow the user to enter multiple jumbled words.
Input/Output Specification

Your program should prompt the user whether or not they want to enter a jumbled word. If the user enters yes (check for "y", "yes", "Y", and "Yes"), then prompt the user for a word. Read in this word, and determine how many of its permutations are valid words in the dictionary. For each valid permutation, output a single line with the following format:
A permutation of W that is a valid word is X.
where W is the jumbed word entered by the user and X is a permutation of W that is found in the dictionary.in file.
If no permutation of the letters entered are found in the dictionary, then output the following line:

Sorry, no permutations of W form a word.
You may assume that the word entered by the user will be no longer than 29 characters and no word in the dictionary file is longer than 29 characters either. The words stored in the dictionary use only lowercase letters.
Your program should continue prompting the user to enter another word until the user says no.

The dictionary file has a single integer, n, on its first line, specifying the number of words in the file. The next n lines contain one word in the dictionary each, in sorted alphabetical order.
Implementation Restrictions

You must use the recursive algorithm shown in class to generate all the permutations of the entered letters.
You must implement a binary search of the dictionary.

You must dynamically allocate an array of strings that stores the dictionary and free this memory when appropriate.
Sample Run

Would you like to enter a jumbled word?

Yes

What word would you like scored?

tca
A permutation of tca that is a valid word is act.

A permutation of tca that is a valid word is cat.
Would you like to enter a jumbled word?

Y

What word would you like scored?

zyfrpq

Sorry, no permutations of zyfrpq form a word.
Would you like to enter a jumbled word?

no

Thanks for using the Jumble Solver!
Deliverables

Turn in a single file, jumble.c, over WebCT that solves the specified problem. Make sure to include ample comments and use good programming style, on top of the requirements that are given in the program description above. If you decide to make any enhancements to this program, clearly specify them in your header comment so the grader can test your program accordingly. Regardless of the enhancements you make, you should make it easy for him to grade the functionality specified in this description.

