
Title: Car Wash Simulation
Points: 100 points

Submission Due: Monday July 3, 2007, 11 PM

Objectives:

 To get familiarity with implementation and manipulation of Queues and stacks.
Description:

In this assignment you will simulate traffic flow at Joe’s Car Wash. Although the main concern is to figure out the average waiting time, you will print out others items of interest as well. Assume that only a single car gets washed at a time, and that each car takes the same amount of time to get washed.
The waiting area in Joe’s Car Wash can accommodate at most m cars (besides the one being washed). This means at most m cars (m > 0) can wait in the queue. If a car arrives when the wash station is busy, and there are already m cars waiting in the queue, the new arrival is turned away as an “overflow” and not counted. The unit of time is taken to be one minute. Any fractions of a minute are being ignored.
The drivers do not pay cash for the car wash. They use their pre-paid metal tokens for this purpose. Just before they enter the wash station, they drop their tokens in a special box. As more cars get washed, the tokens keep pile up in a neat stack. Each driver puts his/her token on top of the stack when they arrive. Once in a while Joe turns up, opens the box, picks up the tokens one by one from the stack of tokens that has accumulated and makes an entry into his book in the order the tokens are picked up. Note: He picks up the tokens from the top of the stack always.
You will simulate the activities at Joe’s car wash using stacks and queues, and keep track of waiting time for each car. You can implement stacks and queues using arrays or linked lists. Note that
1. If an arrival and departure occur during the same minute, the departure is processed first.

2. If a car arrives when the queue is empty and no cars are being washed, the car starts getting washed immediately; it is not put on the queue.

3. As soon as it leaves the queue and enters the wash station, the waiting time for the car is over.
4. If a car arrives in the same minute interval a car wash is over, but there is no place to wait, then the next waiting car immediately moves into the station, and the arriving car joins the other waiting cars.

5. The average waiting time is determined by adding up the waiting times for each car and dividing by the number of cars.

6. Joe’s car wash opens at 8 AM and entry to the premises closes at 6 PM. The arrival time indicated on the input file would be in minutes starting at 8AM. The wash time d would be specified on the data file. (8<d<20)
Input Data:

Ask the user for the name of the input file. The user will enter the name of a valid input file. The first line of the file will contain 3 integers indicating the time for one car-wash, maximum number of cars that can be accommodated besides the car being washed, and the number of data samples on the file.
Each data sample will consist of number of lines – each line indicating the time of arrival of a car and the corresponding token number. Each car will have a distinct token number. It is guaranteed that the arrival times will be in a non-decreasing sequence. Cars which enter the premises by 6 PM and find a place in the waiting queue will get washed.
An abnormally large arrival time will indicate the end of that data sample (you can figure that out as you know how long Joe’s shop is open everyday).
To be consistent with data in other lines, the last line of a data sample will also carry a fictitious token number, which is to be ignored.
The token number 100 is reserved for Joe. The corresponding time of arrival will indicate the time Joe makes the scene to collect his tokens. Note that Joe does not park his own car on the premises.
Data Processing:

You will process the data as you read it from the input file, line by line, and keep on posting to the output file (call it out.txt). You will also print the contents of the output file to the screen. The sample output file illustrates how your output should appear.
Arrivals are indicated by time of arrival, the string “arrival”, followed by token number of the car. The departure line indicates the time of the event, the string “departure”, token number and the waiting time in minutes for that car. If the waiting area is full, and the car is turned away, its departure line should indicate the time of event (which would be the same as the arrival time), with the string “turned away”.

You should also output the total number of tokens that Joe collects and the token numbers in the order in which he picks up the tokens. Finally you need to print out the average waiting time for the cars for each data sample. See the sample output and sample output file below. Your outputs should be STRICTLY in the same format.

Sample Input File:

10 5 2

15 51

20 65

40 21

55 100

2000 70

5 35

5 76

7 25

12 69

12 30

13 55

14 12

18 88

20 66

25 44

50 100

100 100

5000 40
Interpretation of the Sample Input File:

10 5 2

It takes 10 minutes per car wash,
Up to a maximum 5 cars can wait on the premises,
There are 2 data sets on the data file.
15 51
(Start of data set 1)
First car with token number 51 arrives in 15th minute

20 65

Car with token number 65 arrives in 20th minute

40 21

Car with token number 21 arrives in 40th minute

55 100

Joe reaches in 55th minute

2000 70

End of data sample 1

5 35

Start of data sample 2, first car arrives at 5th minute
5 76

Another car arrives at 5th minute (but after the car with token number 35)

7 25
A third car arrives at the 7th minute with token number 25.
12 69

12 30

13 55
Three more cars arrive by minute 13. At this point in time, one car is being washed and five are waiting in the queue, so it is full.
14 12
This car is turned-away because the queue is full.
18 88
This car is added to the queue since the first car has been fully washed.
20 66
This car is turned-away because the queue is full – the second car is currently being washed.
25 44
This car is added to the queue since the second car is JUST finished being washed.
50 100

Joe makes the scene at 50th minute

100 100

Joe makes the scene at 100th minute

5000 40
End of data sample 2

Processing of Sample Input data:

Data sample 1:

Car 51 need not wait as it is the first car to arrive and the wash-station is empty. The driver leaves token 51 in the token slot and straightway goes to the wash-station. Car 65 finds station occupied, and waits in the queue. Car 51 is done by minute 25 and leaves the scene with 0 minute waiting. The driver of the waiting car drops token 65 in the slot, and gets into the wash-station. It leaves the premises at minute 35. Note that this car had to wait for 5 minute in the waiting area. Car 21 arrives in minute 40, finds the wash-station free, drops token 21 in the slot, and is done by minute 50. Joe makes the scene at minute 55. He opens the slot box, and picks up the 3 tokens 21, 65 and 55 in that order.
Data Sample 2:
5 35

5 76

7 25

12 69

12 30

13 55

At minute 5, car 35 starts getting washed. Other cars keep waiting in the queue as they arrive at the premises. It is found that at minute 13, while car 35 is still in the wash station, cars 76,25,69,30, and 55 are waiting to be served. At minute 14, car 12 arrives. But since there is no room to wait (m = 5) , it is turned away. At minute 15, car 35 departs, and car 76 moves in the station. Thus, when car 88 arrives at minute 18, there are just 4 cars on the premises, and it joins the queue. At minute 25, car 44 arrives. However as car 76 is done by this time and departs the premises, car 25 enters the station, the waiting line moves up and is able to accommodate car 44.
When Joe makes the scene at minute 60, he finds 5 tokens in the order 30, 69, 25, 76, 35.

Sample Output:

What is the name of the data file?

sample.txt

Data Sample 1:

15 arrival 51

20 arrival 65

25 departure 51 0

35 departure 65 5

40 arrival 21

50 departure 21 0

55 Joe collects 3 tokens: 21 65 51

Average wait time: 1.667 minutes
--
Data Sample 2:

5 arrival 35

5 arrival 76

7 arrival 25

12 arrival 69

12 arrival 30

13 arrival 55

14 arrival 12

14 turned away 12

15 departure 35 0

18 arrival 88

20 arrival 66

20 turned away 66

25 departure 76 10

25 arrival 44

35 departure 25 18

45 departure 69 23

55 departure 30 33

60 Joe collects 5 tokens: 30 69 25 76 35

65 departure 55 42

75 departure 88 47

85 departure 44 50

100 Joe collects 3 tokens: 44 88 55
Average wait time: 27.875 minutes
Note: The output file should look exactly like the output the program produces to the screen AFTER reading in the name of the input text file.
Restrictions:

1. Your source file should begin with comments containing the following information:

/* Name:

PID:
Course:
Assignment title:

Date:
Program compilation: My programs works under gcc on OLYMPUS/ devC++

The code represents my own effort, and I have not copied any part of it from another source.
*/

2. Code should run under gcc on OLYMPUS or under devC++.

3. You must break up the program into number of function modules. Document your code properly so that the logic becomes clear to the reader. Indicate purpose of each function in the code. The code must contain separate functions for stacks and queues.
4. Make judicious use of white spaces wherever needed. The code should be properly indented.

 Deliverables:

Submit the assignment via WebCT.

Due date: 11 PM, July 3, 2007.

Cut off date: 11 PM, July 5, 2007. (with late penalty).
Your code must compile under gcc or cygwin.
It is recommended that you make use of the Olympus account or devC++ for working on the assignment. Save the program as .c if working with devC++.
COP 3502 Summer 2007 -- Programming Assignment #4

