Honors Computer Science I

Assignment #4: Algorithm Analysis

Assigned: 2/8/08 (Friday)

Due: 2/15/08 (Friday by 3pm in HEC-240) (or in class on 2/13)

1) Using the limit definition given in class, determine whether or not the following statements are true or false:

a)
[image: image1.wmf])

(

7

5

3

2

2

n

O

n

n

=

+

-

b)
[image: image2.wmf])

(

7

5

3

10

2

n

O

n

n

=

+

-

c)
[image: image3.wmf])

lg

(

5

3

2

n

n

n

n

W

=

-

d)
[image: image4.wmf])

lg

(

lg

2

3

7

3

4

n

n

n

n

n

n

Q

=

-

e)
[image: image5.wmf])

(

]

[lg

001

.

0

2

10

n

O

n

=

f)
[image: image6.wmf])

(lg

)

lg(

10

n

n

Q

=

g)
[image: image7.wmf])

7

(

2

3

n

n

O

=

h)
[image: image8.wmf])

2

(

2

)

(

n

n

O

O

=

i)
[image: image9.wmf])

(lg

))

(

lg(

n

O

n

O

=

Please show your work in evaluating the appropriate limit and/or justify your answer.

2) An O(n2) algorithm takes 20 seconds to run when the input size is n=100,000. How long would we expect it to run on an input size of n=150,000?

3) An O(nlgn) algorithm takes 2 seconds to run when the input size is n=220. How long would we expect it to run on an input size of n=225?

4) An O(nk) algorithm takes .2 seconds to run on an input size of s, and 3.2 seconds to run on an input of size 2s. What is k?
5) What is the run-time (theta bound) of the following code segment in terms of n?

for (i=0; i<n; i++)

 for (j=n; j>=0; j--)

 sum++;

6) What is the run-time (theta bound) of the following code segment in terms of n?

for (i=0; i<n; i++)
 if (n%i > n/2)

 for (j=0; j<n; j++)

 sum++;

7) What is the run-time (theta bound) of the following code segment in terms of n?

i = n;

while (i > 1) {

 for (j=0; j<i; j++)

 sum++;

 i = i/2;

}

8) What is the run-time (theta bound) of the following code segment in terms of n?

i = 1;

while (i < n) {

 for (j=0; j<i; j++)

 sum++;

 i = i + 5;

}

9) What is the run-time (theta bound) of the following code segment in terms of n?

for (i=1; i<n; i++)

 for (j=1; j<n/i; j++)

 sum++;

Hint:
[image: image10.wmf]å

=

»

n

i

n

i

1

ln

1

.

10) Find the following sums:

a)
[image: image11.wmf]å

=

n

i

i

2

5

b)
[image: image12.wmf]å

=

+

100

10

)

4

3

(

i

i

c)
[image: image13.wmf]å

=

n

i

i

n

4

1

3

d)
[image: image14.wmf]å

å

=

=

n

i

i

j

1

1

4

e)
[image: image15.wmf]å

å

=

=

+

100

10

1

)

12

1

(

i

i

j

j

f)
[image: image16.wmf]å

-

=

n

n

i

i

2

1

g)
[image: image17.wmf]å

-

=

+

7

0

)

1

2

(

n

i

i

h)
[image: image18.wmf]å

=

20

5

)

75

.

0

(

4

i

i

i)
[image: image19.wmf]å

¥

=

-

1

)

5

.

0

(

3

i

i

11) Use the iteration technique to solve the following recurrence relations:

a) T(n) = 2T(n-1) + 1

b) T(n) = T(n-1) + n

c) T(n) = 2T(n/2) + n

d) T(n) = T(n/2) + n

12) Extra Credit: Run your jumble program on words of lengths 8 and 9 with the same dictionary. Based on this data, make predictions about how long your program will take for words of lengths 10 and 11. Run your program and record the actual results. How close were your predictions? For your write-up, just state how long 8 and 9 took. Then explain how long you think 10 and 11 ought to take. Then give the actual data.

13) Extra Credit #2: Experimentally determine the run-time of the posted slow-sort. Assume that the run-time is of the form O(nk), for some k > 2. (Note: This may not be true, it may have a non-polynomial component to it, but this assumption is reasonable.)
_1263971857.unknown

_1263973401.unknown

_1263973468.unknown

_1263973633.unknown

_1263973693.unknown

_1263973742.unknown

_1263973666.unknown

_1263973589.unknown

_1263973433.unknown

_1263973322.unknown

_1263973380.unknown

_1263971877.unknown

_1263971600.unknown

_1263971800.unknown

_1263971819.unknown

_1263971661.unknown

_1263971550.unknown

_1263971564.unknown

_1263971526.unknown

