COP 3330 Final Exam
Spring 2007

4/26/07

Lecturer: Arup Guha

Name: _____________

1) (5 pts) Write a Java expression equivalent to the mathematical expression

ecos(ln |2x+7|).

 The only variable in your expression should be x.

__
2) (10 pts) Write a static method that takes in a character array and returns a new String object that contains the contents of that character array in reverse order. (For example, if you pass in a character array storing the letters 'h', 'e', 'l', 'l', and 'o', respectively, your method should return the String "olleh".)

public static String reverse(char[] word) {

}

3) (5 pts) Write an Exception class called InvalidResistanceException that inherits from Exception. The class should only contain a constructor that takes in a String s and makes a call to the base class constructor.

4) (16 pts) Resistors are used in circuits and are measured in a unit called Ohms. In particular, two resistors can either be placed in series or be placed in parallel. If two resistors are placed in series, they are equivalent to a third resistor that is the sum of their resistances. (Thus, a 3 Ohm resistor in series with a 4 Ohm resistor is equivalent to a 7 Ohm resistor.) If two resistors with resistances R1 and R2 are placed in parallel, they are equivalent to a resistor with resistance (R1)(R2)/(R1+R2). (Thus, a 3 Ohm resistor in parallel with a 6 Ohm resistor is equivalent to a 2 Ohm resistor.) Complete the Resistor class below. When a Resistor object is printed out, its resistance should be followed by the string "Ohms". For example, a Resistor object storing 3.6 should print out as "3.6 Ohms". In the constructor, val is negative, throw the InvalidResistanceException and pass to it the string, "No Negative Resistors", otherwise just set the value of resist.
public class Resistor {

 private double resist;

 public Resistor(double val) throws InvalidResistanceException {

 }

 public String toString() {

 }

 public Resistor series(Resistor other)

throws InvalidResistanceException {

 }

 public Resistor parallel(Resistor other)

throws InvalidResistanceException {

 }
}

5) (10 pts) Write a segment of code that prompts the user to enter a resistance value and tries to create a Resistor object with that value. If this object is invalid, catch the InvalidResistanceException and reprompt the user to enter another value. Continue doing so until the Resistor object is created.

6) (8 pts) Complete the main method below that asks the user for two resistance values (without error checking!) and then creates two resistance objects and displays to the user the effective resistance of putting those two original resistors in series and in parallel.
import java.util.*;

public static void main(String[] args) throws
InvalidResistanceException {

 Resistor r1, r2;

 double tmp;

 Scanner stdin = new Scanner(System.in);

 System.out.println("Enter the resistance of the first resistor.");

 System.out.println("Enter the resistance of the second resistor.");

 Resistor r3 = ___;
 Resistor r4 = ___;
 System.out.println(r1+" in series with "+r2+" equals "+ r3);

 System.out.println(r1+" in parallel with "+r2+" equals "+ r4);

}

7) (25 pts) What is the output of running the main program below? The methods called in this program are defined in the separate code handout. There are EXACTLY 25 lines of output.
public class Cmain {

 public static void main(String[] args) {

A a = new A();

A b = new B(2);

B c1 = new C(7);

C c2 = new C(4,1,9);

System.out.println(a);

System.out.println(b);

System.out.println(c1);

System.out.println(c2);

a.f(b);

b.f(c1);

c1.f(c2);

 }

}

8) (20 points) Design a piece of software that aids students in studying for exams, such as the SAT and ACT. Write a couple paragraphs describing your overall design and create a UML diagram illustrating the relationships between classes in your design. A review of some UML specifics is attached to the end of this exam. This question is OPEN-ENDED and will be graded based on the level of detail in your answer and the types of considerations you have made. (You may continue your work on the back of the last page.)
9) (1 pt) What commonly spoken exclamation is produced by adding 'S' to the abbreviated version of "Object Oriented Programming"? ______
Review of UML
Relationships between classes

For generalization (inheritance), use an arrow with a triangle, where the triangle points to the base class.

For aggregation (HAS-A), use an arrow with a diamond, where the diamond points to the more complex class. Do NOT fill in any of the diamonds. (Essentially, don't worry about weak or strong aggregation.)

Details within a class

There are three portions of a box representing a class in UML:

1) The name of the class

2) A listing of the instance variables (fields) of the class

The syntax to list each of these includes a symbol for the visibility modifier (discussed below), followed by the name of the variable, followed by a colon, and then the type of the variable. (For example, -money:double, indicates a private instance variable named money that is a double.)

3) A listing of the instance methods of the class

The syntax to list each of these includes a symbol for the visibility modifier (discussed below), followed by the name of the method, followed by a listing of parameters inside of parentheses, a colon, and then the return type of the method. The parameter list contains variables separated by commas. Each variable is listed with its name, followed by a colon, followed by its type. (For example, +calc(val:double,rate:double):double, indicates a public instance method that takes in two doubles named val and rate, respectively and returns a double.)
Visibility modifiers

Use + to denote public.

Use – to denote private.

Use # to denote protected.

Scratch Page – Please carefully label any work you would like graded on this page.
