Object Oriented Programming - Programming Assignment #4

Assigned: 3/9/07 (Friday)

Due: 4/1/07 (Sunday) at 11:55pm WebCT time

Objective

1. Write a Java program that utilizes multiple classes.

2. Utilizing a Collections object.

3. Writing a Java class that utilizes the HAS-A relationship.

Problem: Rummy

You will write a program that allows a player to play a simplified version of Rummy against one other player. In order to complete this task, you must define the following classes:

1) Card

2) Deck

3) Hand

4) Player

5) Game

Here is a brief description of each class:

Card

This class should have two instance variables that keep track of the suit and value of the card. Each component should be a char. The four possible suits are ‘S’, ‘H’, ‘D’ and ‘C’. (These represent Spades, Hearts, Diamonds and Clubs, respectively.) The possible values are ‘A’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘T’, ‘J’, ‘Q’, and ‘K’. (These represent Ace, two through nine, ten, Jack, Queen and King, respectively.) Your class should have a Constructor, a toString method, and any other methods you deem appropriate.

Deck

This class should store a collection of Card objects. The specific instance variable(s) will be left up to you. (For example, you could create an Array of Card objects, or use an ArrayList of Card objects, etc.) This class should have a default Constructor which automatically creates a full deck of 52 playing cards that are randomly arranged. This class should also have a method called Deal that removes and returns the Card object at the top of the current Deck. It should ALSO have a method that adds a Card object to the bottom of the current Deck. The rest of the implementation of this class will be left up to you.
Hand

This class should store six Card objects. You may either create a constructor that starts off with an empty hand and then allows another method to add cards into the Hand object, or require the constructor to set the six cards in the Hand object. This class should contain a method that allows a Hand object to add a card, and another method that allows a Hand object to discard a card. A Hand object can also lay down a set of cards. It is allowed to lay down three cards of the same suit or three cards of the same value. This should be accomplished with an instance method that takes in there integers indicating the indexes of the three cards to be laid down and returns an integer indicating the score of those three cards. This class should have also have a static method that takes in three Card objects and returns true if and only if they are a valid "set" as defined above. The reason this method should be static is that the problem it solves isn't specific to a Hand object.

Player
A player object consists of a String to store the name of the player, an integer to store the player's score, and a Hand object to store the cards in their hand. Whenever cards are laid down, points are added to the current Player object. In particular, all cards 2-9 are worth five points, and the rest of the cards are worth 10 points.
Game

This class will have your main method and any other methods you deem necessary. The instance variables of this class will be one Deck object and two Player objects. The two hand objects will below to the two participants of the game. In your main method, you will instantiate a Game object, and then allow the two users to play a single game of Rummy. This game will consist of showing the user the six cards they were dealt, and letting them (1) draw a card from the top of the deck, (2) lay down a single group of cards, (3) discard a card to the deck. Play continues with each player taking turns until one player uses up all of his or her cards. At this point, the player with the higher score wins. The score is determined as the sum of the points of the cards laid down minus the sum of the points left in a player's hand. (Thus the player who uses all of his/her cards will not get anything subtracted out of their score while the other player will.)
For each turn, automatically add a card from the top of the deck to the user's hand. Then print out their hand of cards with the newly added card. Secondly, ask them if they would like to lay down a set of cards. If so, ask them which cards they would like to lay down. (These will be numbered 0 to n, where n is the current size of the hand of cards.) Then, ask them which card they would like to discard. Add this card to the bottom of the deck. Automatically end the game with a player ends a turn with no cards.
 Simplified Rules for Rummy
In this version of Rummy, there is no separate "discard" pile and players only have six cards. They must lay down exactly three cards, either which have the same exact suit, or the same exact value, for example three spades or three kings. Cards from two to nine are worth five points each and other cards (face cards and aces) are worth 10 points each. As mentioned above, the game ends with one player ends his/her turn with no cards.
Input Specification

1. Assume that the user will always enter valid values for all prompts, except that they may not properly identify a set of three cards to lay down.
Output Sample

Here is one sample output of running the program. Note that this test is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given. The user input is given in italics while the program output is in bold.

Note: You may make small changes to the format provided below, but for the ease of grading, try to keep the order of questions the same and use a 0-based indexing system for the cards.
Sample Run
Welcome to Rummy!

Player 1, what is your name?

John

Player 2, what is your name?

Jennifer

John, here are the cards you have been dealt, plus the card you have drawn from the deck:
0.AC 1.2D 2.3S 3.8H 4.2S
5.JS 6.3H
Would you like to lay down a set(y/n)?
y
Indicate which 3 cards with their numbers(0-6):

2 4 5
Great! You have earned 20 points.
Here are your cards again:
0.AC 1.2D 2.8H 3.3H

Which card would you like to discard(0-3)?

1

Jennifer, here are the cards you have been dealt, plus the card you have drawn from the deck:

0.4H 1.TC 2.AD 3.5S 4.8D
5.KH 6.QS
Would you like to lay down a set(y/n)?

n
Here are your cards again:
0.4H 1.TC 2.AD 3.5S 4.8D
5.KH 6.QS
Which card would you like to discard(0-6)?

1
John, here are the cards you have been dealt, plus the card you have drawn from the deck:

0.AC 1.8H 2.3H 3.5D

Would you like to lay down a set(y/n)?

n

Here are your cards again:
0.AC 1.8H 2.3H 3.5D

Which card would you like to discard(0-3)?

3
Jennifer, here are the cards you have been dealt, plus the card you have drawn from the deck:

0.4H 1.AD 2.5S 3.8D 4.KH 5.QS 6.7D

Would you like to lay down a set(y/n)?

y

Indicate which 3 cards with their numbers(0-6):

0 1 2

Sorry, that is not a valid set.
Here are your cards again:

0.4H 1.AD 2.5S 3.8D 4.KH 5.QS 6.7D

Which card would you like to discard(0-6)?

4
John, here are the cards you have been dealt, plus the card you have drawn from the deck:

0.AC 1.8H 2.3H 3.6H

Would you like to lay down a set(y/n)?

y

Indicate which 3 cards with their numbers(0-6):

1 2 3

Great! You have earned 15 points.

Here are your cards again:

0.AC

Which card would you like to discard(0-0)?

0

John has no cards left, so the game is over.

John has 35 points.

Jennifer has -40 points.

The winner is John.
Deliverables

You must submit a solution to the program described above in five files named Card.java, Deck.java, Hand.java Player.java and Game.java over WebCT.

Restrictions

You must use a Java 5.0 compiler to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include ample comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Following the general guidelines for each class specified in this write-up. (These specifications include instance variables for each class as well as certain methods for each class.)
2) Your programming style and use of white space. (Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor you could get 10% or 15% deducted from your grade.)
