Object Oriented Programming - Programming Assignment #3

Assigned: 2/23/06 (Thursday)

Due: 3/9/06 (Thursday) at 11:55pm WebCT time

Objective

1.  Write a Java program that utilizes multiple classes.

2.  Utilizing a Collections object.

3.  Writing a Java class that utilizes the HAS-A relationship.

Problem: Poker

You will write a program that allows a player to play a simplified version of Poker against the Computer. In order to complete this task, you must define the following classes:

1) Card 

2) Deck
3) Hand

4) Game

Here is a brief description of each class:

Card

This class should have two instance variables that keep track of the suit and value of the card. Each component should be a char. The four possible suits are ‘S’, ‘H’, ‘D’ and ‘C’. (These represent Spades, Hearts, Diamonds and Clubs, respectively.) The possible values are ‘A’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘T’, ‘J’, ‘Q’, and ‘K’. (These represent Ace, two through nine, ten, Jack, Queen and King, respectively.) Your class should have a Constructor, a toString method, and any other methods you deem appropriate.

Deck

This class should store a collection of Card objects. The specific instance variable(s) will be left up to you. (For example, you could create an Array of Card objects, or use an ArrayList of Card objects, etc.) This class should have a default Constructor which automatically creates a full deck of 52 playing cards. This class should also have a method called Deal that removes and returns a Card object from the current Deck. The rest of the implementation of this class will be left up to you, except that you should randomize the order of the Card objects in the Deck.
Hand

This class should store 5 Card objects. You may either create a constructor that starts off with an empty hand and then allow another method to add cards into the Hand object, or require the constructor to set the five cards in the Hand object. This class should contain a method that allows trading a card. (The method should take in a Card object and an index, and trade the card in the current Hand at that index for the Card object passed in as a parameter. Your Hand class should have a toString method. Also, your Hand class should have a compareTo method that implements the Comparable interface. (This is the method that will be used to determine who between two players has a better hand.)
Game
This class will have your main method and any other methods you deem necessary. The instance variables of this class will be one Deck object and two Hand objects. One of the Hand objects will belong to the user while the other will be the computer’s hand. In your main method, you will instantiate a Game object, and then allow the user to play a single game of Poker against the Computer. This game will consist of showing the user the five cards they were dealt, asking them how many they want to switch out (which is guaranteed to be an integer in between 0 and 5 inclusive), then asking them which cards they want to replace, and finally replacing those cards with the top cards from the Deck and then printing out to the screen whether or not the user won, along with both the user’s cards and the computer’s cards.
Simplified Rules for Poker

In this version of poker, the only type of hand that is worth anything is multiple cards of the same kind. Here’s how the winner between two Hand objects is determined:

1) A Hand with more of a kind automatically wins.

2) If both Hands have the same number of a kind, then the winner is the one with the higher value, with Ace high and two low. (The full order, from lowest to highest value is: ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘T’, ‘J’, ‘Q’, ‘K’, and ‘A’.

3) If these match also, then the two Hands are tied!
Input Specification

1. The user will always enter an integer in between 0 and 5 to designate the number of cards they want to switch.
2. The user will always correctly designate the indices of the cards he/she wants to trade out.

Output Sample

Here are two sample outputs of running the program. Note that this test is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given. The user input is given in italics while the program output is in bold.

Sample Run A

Welcome to Poker Player!
Here are the cards you have been dealt:

1.AC  2.2D  3.3S  4.8H  5.2S

How many cards would you like to discard?

3

Indicate which 3 cards with their numbers(1-5):

1 3 4

You win!

Here are your final cards:

1.2H  2.2D  3.6S  4.TH  5.2S

Here are the computer’s final cards:

1.6D  2.KH  3.AH  4.QC  5.8S
Sample Run B

Welcome to Poker Player!

Here are the cards you have been dealt:

1.3S  2.JH  3.2H  4.3H  5.AD
How many cards would you like to discard?

5
Indicate which 5 cards with their numbers(1-5):

1 2 3 4 5
Sorry, you lose!

Here are your final cards:

1.7H  2.7S  3.8S  4.AH  5.KS

Here are the computer’s final cards:

1.8D  2.KD  3.8H  4.4C  5.9C
Note: For a tie, print out, “You and the computer tied!”

Deliverables

You must submit a solution to the program described above in four files named Card.java, Deck.java, Hand.java and Game.java over WebCT.

Restrictions

You must use a Java 5.0 compiler to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include ample comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. (Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor you could get 10% or 15% deducted from your grade.)

