
COP 3223 Quiz #4 11/14/2025 

Last Name: ______________ , First Name: _________________ 

Circle Lab Time: 8:30 am        9:30 am            11:30 am         12:30 pm       

              1:30 pm                 2:30 pm                 3:30 pm                 4:30 pm 

 

1) (10 pts) Write a function, leftcycle, that takes in a pointer to an array of strings, words, as well 

as the length of that array, numwords, and cyclically shifts the strings in the array to the left by 

one place. This means that each string in the array moves to the index below its previous location 

and the string in index 0 goes to the end of the array. For example, if the array looked like this 

before the function call: 

 

coffee dog cat homework sponge soda 

 

then after the function call the array would look like this: 

 

dog cat homework sponge soda coffee 

 

You may assume that the length of each string in the input array is less than 20 characters. 

 
void leftcycle(char words[][20], int numwords) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 



2) (8 pts) Complete the program below so that it reads its input from standard input, character by 

character, and for each non-digit character, outputs it, but for each digit, your program will output 

the character that is that digit subtracted from 9. For example, if the input has the character '3', then 

your program should output the character '6'. Please use the function putchar only to output. 

 
#include <stdio.h> 

#include <ctype.h> 

 

int main() { 

 

    int c; 

    while ((c = getchar()) != EOF) { 

 

 

 

 

 

 

 

 

 

 

 

    } 

    return 0; 

} 

 

 

  



3) (17 pts) We can model a mountainous area as a two-dimensional array of integers, where the 

integer stored in elevation[x][y] represents the elevation in the location with coordinates (x, y) on 

the Cartesian plane. A valley is a cell with 8 adjacent cells that each have a strictly greater height. 

Write a function that returns the number of cells in the input array, elevation, that are valley cells. 

The second input parameter to the function, n, represents that the meaningful data is being stored 

in the first n rows and n columns (square grid) of the input array. (You may assume n ≤ MAX.) 

For full credit, please use the DX and DY arrays provided. They will greatly shorten your code. 

 
#define MAX 100 

 

const int DX[] = {-1,-1,-1, 0,0, 1,1,1}; 

const int DY[] = {-1, 0, 1,-1,1,-1,0,1}; 

const int NUMDIR = 8; 

 

int numValleyCells(int elevation[][MAX], int n) { 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} 



4) (14 pts) Consider managing money with a money struct (shown below). Please complete the 

three functions below. The totalCents function should return the equivalent number of cents of the 

money struct pointed to by mine. The compare function should return a negative integer if the 

money object pointed to by pt1 is less than the money object pointed to by pt2, 0 if they are equal, 

and a positive integer otherwise. Finally, the deductPayment function should determine if the 

money struct pointed to by pay is less than or equal to the money struct pointed to by mine, if so, 

then pay should be subtracted from mine and mine should be adjusted so its new dollars and cents 

components are accurate and cents are in between 0 and 99, followed by returning 1. If the money 

struct pointed to by pay is greater than the one pointed to by mine, make no change to mine and 

return 0. 
 

struct money { 

    int dollars; 

    int cents; 

}; 

 

int totalCents(const struct money* mine) { 

 

 

} 

 

int compare(const struct money* pt1, const struct money* pt2) { 

 

 

 

 

 

 

} 

 

int deductPayment(struct money* mine, const struct money* pay) { 

 

 

 

 

 

 

 

 

 

 

 

} 

 

5) (1 pt) What color is the container for Big Red Chewing Gum? ____________________ 

  



C Language Reference 

 

stdio.h function 
// Reads the next character from standard input. 

int getchar(void ; 

 

// Writes a character to the standard output. 

int putchar(int character); 

 

string.h functions 
// Returns a negative integer if the string pointed to by str1 

// comes before the string pointed to by str2 lexicographically, 

// 0 if both strings are equal and a positive integer if the 

// string pointed to by str1 comes after the string pointed to  

// by str2 lexicographically. 

int strcmp(const char* str1, const char* str2); 

 

// Returns the length of the string pointed to by str. 

int strlen(const char* str); 

 

// Copies the contents of the string pointed to by src into 

// the string pointed to by dest and returns a pointer to the 

// memory address where the string was copied. 

char* strcpy(char* dest, const char* src); 

 

// Appends the contents of the string pointed to by src 

// to the string pointed to by dest and returns a pointer to 

// the memory address of the beginning of the concatenated 

// string. 

char* strcat(char* dest, const char* src); 

 

ctype.h macros 
// Returns 1 if c is a digit, and 0 otherwise. 

int isdigit(int c) 


