Spring 2009 Introduction to C Programming

Program 6 (Text Message Censoring)

Due Date: Please Consult Your Instructor's WebCourses For This
Objective

To give students practice at writing a program using strings.
The Problem

Many people, after a late night, for whatever reason, tend to send emails or text messages that they shouldn’t. Google has experimented with a feature that “blocks” these emails from being sent immediately. (What they do is ask the user some simple math questions before the send operation can execute. Their philosophy is that if someone can’t answer some simple math questions, then maybe the messages they are sending out aren’t the ones they would typically want to send out, under normal conditions.) You don’t want to get in trouble for stealing Google’s idea, but you’ve noticed that the same principle can be applied to text messages. In general, here is what you have noticed:
All text messages sent in between 7:00am and 12:59am (the next day) are reasonably sound messages. But, some messages in between 1:00am and 6:59am tend to be suspect. To reduce your workload, (since censoring requires reading through the whole message), you will ONLY censor messages sent in between 1:00am and 6:59am. All other messages are automatically sent without inspection.

When you inspect the messages sent in between 1:00am and 6:59am, you will censor (block) any message with the following characteristics:

1) The strings “I”, “love”, and “you” appear consecutively, in that order, in any capitalization

2) Three or more misspelled words (you will be given a dictionary of valid “text” words)
3) Has a forbidden word (you will be given a list of these as well)

All comparisons should be done case-insensitive.

Input File Format (textmsg.txt)

The first line of the input file will have a single positive integer, n (n ≤ 30000), representing the number of words in the dictionary. The next n lines will contain one word from the dictionary each, all in lowercase letters, listed in alphabetical order. (No word will be longer than 29 letters.)
The next line in the input file will have a single positive integer, m (m ≤ 100), representing the number of forbidden words. These will NOT be in the dictionary. The next m lines will have each of the forbidden words listed, all in lowercase, one word per line, in alphabetical order.

The following line of the input file will have a single positive integer, t, representing the number of text messages to examine. The rest of the file will contain 2t lines. The relevant information for each text message will be contained in 2 lines. The first line for each text message will contain a time listed in the following format:
hh:mm AM (or)

hh:mm PM

Note: two digits will be used to represent the hour, only when necessary, otherwise 1 digit will be used. There will always be a space after the time and either AM or PM, and the latter will always be capitalized as shown. This time represents when the user wants to send the text message.

The next line will contain a positive integer, w (w < 50), representing the number of words in the message, followed by the text message itself and is guaranteed just to contain strings with letters only separated by space.
The Output

For each message, output a header as follows:

Message #x:

where x (1 ≤ x ≤ t) is number of the text message. (Note: Always leave a space after the colon.)
If the message should be censored, then finish the line with the following string:

FAILED TO SEND.

Otherwise, simply put the original text of the message (in its original capitalization) to follow.

Separate the output for each case with a blank line.
Sample Input File

4
i

jason

love

you

2
ahole

jerk

5
4:21 AM

4 Jason I LOVE you

3:34 PM

4 Jason I love you
2:00 AM

4 Jsoan I lve you

4:00 AM

3 Jason you ahole

7:00 AM

3 Jason you jerk

Sample Output

Message #1: FAILED TO SEND.

Message #2: Jason I love you

Message #3: Jsoan I lve you
Message #4: FAILED TO SEND.

Message #5: Jason you jerk

References

Textbook: Chapters 13, 22.2, 22.3

Notes: Lectures 9, 21
Deliverables

You must submit your solution to the problem, textcensor.c, over WebCourses.
Restrictions

Although you may use other compilers, your program must compile and run using DevC++. Please use DevC++ to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include ample comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. (Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor you could get 10% or 15% deducted from your grade.)

3) Compatibility to DevC++. (If your program does not compile in this environment, you will get a sizable deduction from your grade, likely to be over 50%)

