Introduction to C - Programming Assignment #6

Assigned: 11/17/05 (Thursday)

Due: 12/2/05 (Friday) at 11:55pm WebCT time

Objectives

1. Review use of logical constructs and functions.

2. Use structures to store related information of different types and manage an array of structures.

3. Use both input and output files.

Problem: Registrar's Office

UCF recently changed over computer systems. Unfortunately in the change, they lost their program to compute students' GPAs AND lost the textfiles that stored those cumulative GPAs. They have now hired you to help them write a new program to reconstruct those text files. Luckily, they have student assistants who have logged the information necessary to create the cumulative reports in other textfiles.

Your program will read in a file storing individual actions that the registrar records. Note that each action affects a single student's record. Here are the types of possible actions:

	Syntax
	Action

	TOOK_CLASS <HOURS> <GRADE>
	The student took a class that was worth <HOURS> credit hours and earned the letter grade <GRADE> (which must be an 'A', 'B', 'C', 'D' or 'F'.)

	GRADE_FORGIVE <HOURS> <GRADE>
	The student has gotten a grade forgiveness on a class that was worth <HOURS> credit hours where they had earned the letter grade <GRADE>. A grade forgiveness "erases" the class in question as if it were never taken.

	CHANGE_GRADE <HOURS> <OLDGRADE> <NEWGRADE>
	The student's grade in a class has changed from <OLDGRADE> to <NEWGRADE>. You may assume that <OLDGRADE> was previously recorded without checking any previous records.

	REMOVE
	This command removes the student in question from the database entirely. Once a student is removed, no future action can add them back into the database.

In the actual input file, each action will be preceded by the last name, followed by the first name of the student for whom the action is being performed. You are guaranteed that both of these will be 29 characters long or less.

After reading in the input file, your program should calculate each student's correct GPA, and write an output file of each student sorted by GPA in descending order. (If two students have the same GPA, then sort by last name, in alphabetical order. If two students have the same GPA and last name, sort by first name, once again in alphabetical order. You will be guaranteed that no two students have the same first and last names.)

You will then write out a second output file. This output file will only store the records of students on the honor roll that have taken 60 or more credit hours. To be on the honor roll, a student must have a GPA of 3.0 or higher. Students should be listed in alphabetical order (by last name, then first) in this file. (This means that someone with the last name Adams should be listed before someone with the last name Baker.)

Students are implicitly added to the database whenever a TOOK_CLASS command is executed on them. A student can be temporarily removed from the database if the total number of credit hours that "count" for them is 0. (This occurs if they take a class, but then get a grade forgiveness for that class.) Thus, if a student "ends up" with 0 credit hours, they should NOT be listed in either output file. But, if they dip down to 0 credit hours at some point, but by the end of the input file have a positive number of credit hours, that student should be in the first file, at least. A student is permanently removed by the REMOVE command. Any subsequent action on them should simply be ignored. (You are guaranteed that no more than 100 distinct students will be removed and that no student will be removed multiple times.) No student removed (at any point in time) in this manner should appear in either output file.

Input File Format

The first line of the input file will contain a single positive integer n (n ≤ 10000), denoting the number of commands to process in the input file. You are guaranteed that no more than 1000 distinct names ever appear in the file. (The school has 1000 or less students guaranteed.)

The next n lines contain one command each. Each command starts with two strings separated by a space: the last and first name of the student in question. Following the first name, is a space, followed by the command to execute on that student as described above. (Note: All names are guaranteed to be all uppercase.)

Output File #1 Format

The first line of the output file should contain a single integer m (0 < m < 1001), representing the total number of distinct students in the output file. (These are students who have a positive number of credit hours.) The following m lines will contain one student record a piece. Namely, each line will contain the student's last name, the student's first name, and the student's GPA to 2 decimal places, each separated by a space.

Output File #2 Format

Same as the format for file #1, except that the first line should contain a single integer representing the total number of students on the honor roll with 60 or more credit hours. You are guaranteed that this number is a positive integer less than or equal to 1000.

What your program should do

Your program should not take in any input from the user. It should directly read from the input file "students.in" and write output to the two files "students.out" and "honorroll.out". (It should be clear which output file is which!) Thus, your program should run almost instantaneously.

A sample input file along with two corresponding output files is included on the course web page.

Deliverables

You must submit the following .c source file with the following name:

1) registrar.c
Please submit this file over WebCT.

Restrictions

Although you may use other compilers, your program must compile and run using cygwin or gcc. Please use either your olympus account or jGRASP to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include ample comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. (Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor you could get 10% or 15% deducted from your grade.)

3) Compatibility to either cygwin in Windows or gcc under olympus. (If your program does not compile in either of these environments, you will get a sizable deduction from your grade.)

