Introduction to C - Programming Assignment #5

Assigned: 10/24/06

Due: 11/10/06 (Friday) at 3:00am WebCT Time

Note: There are two parts to this assignment!!!

Objective

1. To learn how to manipulate one-dimensional arrays.

2. To give students experience using #include with project-specific source files

3. To give students experience integrating special pre-written functions into their code

Deliverables

Although there are two parts to this program, you only need to turn in one source file, maze.c, that encompasses both parts of the program (since the second part of the program incorporates the first part anyway). We have divided this write-up into two parts primarily to assist in its readability and clarity.

Also, note that you cannot modify maze_gen.c or maze_gen.h!! When we compile your program, we will use our original copies of those files to do so!

Problem A: Display a 2D Maze from a 1D Character Array

In this program, you will declare a one-dimensional array of characters, call a pre-written function that creates an ASCII maze and saves it in your array, and then display the maze in two-dimensions.

There will be three steps to this first problem, and they are outlined below:

a.) Including the pre-written maze creation function and supporting functions

Download both maze_gen.c and maze_gen.h from the course assignments page and save them in the working directory where you will be compiling and running the code for this programming assignment.

At the top of your code, just after your #include <stdio.h> statement, include the following line of code:

#include “maze_gen.c”

This will include a number of functions used to create an nxn square ASCII maze. Most of these are just functions that support the creation of ASCII mazes, and you don't need to know anything about them. You will, however, need to use one particular function: maze_create().

If you have trouble with the #include statement, you may want to make sure that you have the files saved in the right directory, double check that you are using “quotes” and not <brackets> around the filename, “maze_gen.c”, and ensure that you downloaded both maze_gen.c and maze_gen.h, even though you are only using #include on one of those files. (maze_gen.c will actually #include maze_gen.h for you.)

Calling the pre-written maze creation function

The maze_create function has the following functional prototype:

int maze_create(char *maze, int n);

The function will take the name of a one-dimensional array of characters as its first argument, and the width of the maze to be created as its second argument. It will create a square ASCII maze of n * n characters and store the characters in the array whose name you passed to the function. Thus, your character array should be of size n * n.

For example:

maze_create(myMaze, 5);

The above statement will create a 5 x 5 square maze, and store those 25 characters in the array called myMaze, which should be declared to be of type char and size 25.

In the maze, a wall is represented by the character '#', a place where someone can walk is represented by a space ' ' character, the starting point of the maze is marked by a lower-case 's', and the ending point of the maze is marked by a lower-case 'e'.

The size of the maze, n, is restricted as follows:

1.) n must be greater than or equal to 5.

2.) n must be odd.

It is your responsibility to ensure that the value of n is acceptable before calling maze_create! You may assume that we will not test your program with a value of n greater than 25. Thus, the largest your character array will have to be is 25 * 25 = 625.

Displaying the maze

After calling maze_create(), your array will contain n * n characters. Your job is now to print out the first n characters on one line, the second n characters on the next line, the third n characters on the next line, and so on, until all characters are displayed.

For example, suppose you have a maze where n = 5, and the following 25 characters are stored in the array after calling maze_create() (we have included numbers below each character to help make this more readable):

#####s # e# # ## ######

0123456789012345678901234

Then you will want to display to the screen:

#####

s # e

#

#

#####

This constitutes the entire first part of your assignment: integrating the provided source code using a #include statement, calling the maze_create() function, and then properly displaying the maze that the function sets up for you.

Special Restrictions:

· Reusing the names of any of the functions defined in maze_gen.c as identifiers in the new source code will cause you trouble. Avoid using the following names when declaring your functions or making variable names:

maze_color, remove_wall, maze_create, joinsSomethingUseful, joinsSameColor, wall_status_update, inBounds

· Defining global variables of any sort may interfere with the functions defined in maze_gen.c. Avoid using global variables of any kind. (This is also a good programming practice in general.)

Input Specification

1. n, where the size of the maze is n*n, will be an integer. You must perform the necessary checks to ensure that n is greater than or equal to 5, and that it is odd!

Output Sample

Here is one sample output of running the program. Note that this test is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given. The user input is given in italics while the program output is in bold.

Sample Run #1

What dimension shall we use for the maze? 2

Invalid input. Please enter an odd integer that is greater than 4: -1

Invalid input. Please enter an odd integer that is greater than 4: 4

Invalid input. Please enter an odd integer that is greater than 4: 5

Here is the randomly generated maze:

#####

s #

#

e

#####

Sample Run #2

What dimension shall we use for the maze? 7

Here is the randomly generated maze:

#######

s #

#

#

#

e

#######

Sample Run #3

What dimension shall we use for the maze? 7

Here is the randomly generated maze:

#######

s # #

#

e

#

#

#######

Problem B: ASCII Maze Game

Now modify your program from Problem A to allow the user to navigate the maze! As before, you will call maze_create to populate your character array with an ASCII maze. This time, however, you will place a little person (represented by the '@' character) on the board, and allow him (or her) to move around the maze. You must prevent the character from stepping onto walls, and you must also detect when the character reaches the exit of the maze, and end the game.

Input Specification

1. n, where the size of the maze is n*n, will be an integer. You must perform the necessary checks to ensure that n is greater than or equal to 5, and that it is odd!

2. To navigate, the user will enter a single character and then hit enter. The user may enter a letter you're not expecting, in which case you must catch the error! (Note: you MUST use the characters i, m, j, and k to represent moves up, down, left, and right, respectively. The TA's do not want to have to adapt to new navigation controls in each program they grade!)

Output Sample

Here are two sample outputs of running the program. Note that this test is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given. The user input is given in italics while the program output is in bold.

Sample Run #1

What dimension shall we use for the maze? 3

Invalid input. Please enter an odd integer that is greater than four: 5

#####

@ #

###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#####

s@ #

###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): i

You can't move up!

#####

s@ #

###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): m

You moved down!

#####

s #

#@###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You can't move right!

#####

s #

#@###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): j

You can't move left!

#####

s #

#@###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): i

You moved up!

#####

s@ #

###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): j

You moved to the left!

#####

@ #

###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#####

s@ #

###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): m

You moved down!

#####

s #

#@###

e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): m

You moved down!

#####

s #

###

#@ e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): m

You can't move down!

#####

s #

###

#@ e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#####

s #

###

@ e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#####

s #

###

@e

#####

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#####

s #

###

@

#####

You win!

Sample Run #1

What dimension shall we use for the maze? 7

#######

e

#

#

@ # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): r

That input is not valid. Please try again.

#######

e

#

#

@ # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#######

e

#

#

s@# # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You can't move right!

#######

e

#

#

s@# # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): i

You moved up!

#######

e

#

#@# # #

s # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): i

You moved up!

#######

e

#@### #

#

s # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): i

You moved up!

#######

#@ # e

#

#

s # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#######

@ # e

#

#

s # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You moved to the right!

#######

@# e

#

#

s # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): m

You can't move down!

#######

@# e

#

#

s # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): k

You can't move right!

#######

@# e

#

#

s # # #

#

#######

Make your move.

(i = up, m = down, j = left, k = right, q = quit): q

You quit before exiting the maze! Better luck next time.

