Introduction to C - Programming Assignment #2

Assigned: 2/6/06 (Monday)

Due: 2/20/06 (Monday) at 3:00am WebCT time

Objective

1. How to write and use an if statement (part A, part B).

2. How to use the math library (part B).

3. How to write and use a loop (part C).

4. How to look up information to aid solving a problem (part C).

Problem A: Martian Leap Year Calculation

The ratio of the length of a year (one revolution around the sun) to the length of a day (one rotation about its axis) of mars is 669.59, approximately. Thus, Martians have come up with a rather strange way to account for that .59 of a day. As you might imagine, Martians have leap years more often than Earthlings. Here are the rules for which years (assume that all Martian years are positive integers) on Mars are leap years:

1) All odd years are leap years.

2) All years divisible by 8, but not by 32 are leap years. (Thus, 8, 16 and 24 are leap years, but 32 is not. Similarly 40, 48 and 56 are leap years but 64 isn't.)

Write a program that prompts the user for a Martian year and then outputs whether or not that year was a Martian leap year.

Input Specification

1. The first (and only) integer entered by the user will be positive.

Output Specification

Output a message with one of the following two formats, based on whether or not the year entered by the user is a Martian Leap Year.

X is a Martian Leap Year.

X is NOT a Martian Leap Year.

where X is the year entered by the user.

Output Sample

Here are two sample outputs of running the program. Note that this test is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given. The user input is given in italics while the program output is in bold.

Sample Run #1

Please enter a Martian year.

2003

2003 is a Martian Leap Year.

Sample Run #2

Please enter a Martian year.

1984

1984 is NOT a Martian Leap Year.

Problem B: Monkey in the Middle

Your math homework necessitates you to do a number of problems where you plot three points on a line and determine which point is "in between" the other two. You find this task rather mundane and would like to write a C program to automate the task for you. The user will input three sets of (x,y) coordinates, specifying the three points in question. Your program should output two pieces of information:

1) Which point is in the middle.

2) The distance between the other two endpoints.

Input Specification

1. Each x and y coordinate will be an integer.

2. No two x-y coordinates will be farther than 10000 units apart.

3. No two x-y coordinates will specify identical points.

4. All three points specified will be collinear.

Output Specification

The first line of output should be of the following form:

(x,y) is the point in the middle.

where x and y are the respective coordinates of the point in the middle.

The second line of output should be of the following form:

The distance between the other two points is D.

where D is the distance between the other two points rounded to two decimal places.

Output Samples

Here is one sample output of running the program. Note that this test is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given. The user input is given in italics while the program output is in bold.

Sample Run

What are the first x and y coordinates?

3 4

What are the second x and y coordinates?

-6 -8

What are the third x and y coordinates?

0 0

(0,0) is the point in the middle.

The distance between the other two points is 15.00.
Problem C: No parachute here!

Your physics homework has you figure out a number of questions dealing with dropping objects from various heights, neglecting the effects of wind resistance. Once again, you are bored solving these mundane problems by hand and wish to write a C program to automate solving these questions. All of your homework questions also assume earth's gravity as 32 ft/sec2. Your program should prompt the user for a positive integer representing the elevation (in feet) from which the object is being dropped. Your program should then print out the elevation of the object for each second it is in the air. The last line of output should be the first second that the object is on the ground.

Input Specification

1. The only integer entered (the number of feet from which the object will be dropped) will be positive.

Output Specification

Create a chart with the first line as follows:

Time
 Altitude

Each following line will have two pieces of information, separated by tabs: the number of seconds after the object has been dropped, and the altitude of the object at that time. Both values should be printed out as integers.
Output Samples

Here is one sample output of running the program. Note that this test is NOT a comprehensive test. You should test your program with different data than is shown here based on the specifications given. The user input is given in italics while the program output is in bold.

Sample Run

What is the altitude you are dropping your object from?

120

Time Altitude

1
 104

2
 56

3
 0
Deliverables

You must submit three files total. Three files will be .c files. Please submit the following three source files:

1) leap.c, for your solution to problem A

2) monkey.c for your solution to problem B

3) drop.c for your solution to problem C.

All files are to be submitted over WebCT.

Restrictions

Although you may use other compilers, your program must compile and run using cygwin or gcc. Please use either your olympus account or jGRASP to develop your program. Your program should include a header comment with the following information: your name, course number, section number, assignment title, and date. Also, make sure you include ample comments throughout your code describing the major steps in solving the problem.

Grading Details

Your program will be graded upon the following criteria:

1) Your correctness

2) Your programming style and use of white space. (Even if you have a plan and your program works perfectly, if your programming style is poor or your use of white space is poor you could get 10% or 15% deducted from your grade.)

3) Compatibility to either cygwin in Windows or gcc under olympus. (If your program does not compile in either of these environments, you will get a sizable deduction from your grade.)

